Skip to main content
Glama

Akave MCP Server

by akave-ai
README.md5.07 kB
# Akave MCP Server A Model Context Protocol (MCP) server that enables AI models to interact with Akave's S3-compatible storage. This server provides a set of tools for managing your Akave storage buckets and objects through AI models like Claude and local LLMs. ## What is MCP? The Model Context Protocol (MCP) is an open protocol that standardizes how applications provide context to Large Language Models (LLMs). Think of MCP like a USB-C port for AI applications - it provides a standardized way to connect AI models to different data sources and tools. ## Features - List and manage buckets - Upload, download, and manage **objects** - Generate signed URLs for secure access - Support for both Claude and local LLMs (via Ollama) - Simple configuration through JSON ## Prerequisites - Node.js 16+ - Access to an Akave account with: - Access Key ID - Secret Access Key - Endpoint URL - For local LLM support: - Go 1.23 or later - [Ollama](https://ollama.ai) installed ## Quick Start Create a configuration file (e.g., `mcp.json`): ```json { "mcpServers": { "akave": { "command": "npx", "args": [ "-y", "akave-mcp-js" ], "env": { "AKAVE_ACCESS_KEY_ID": "your_access_key", "AKAVE_SECRET_ACCESS_KEY": "your_secret_key", "AKAVE_ENDPOINT_URL": "your_endpoint_url" } } } } ``` ## Usage with Claude Desktop 1. Download and install [Claude for Desktop](https://claude.ai/download) (macOS or Windows) 2. Open Claude Desktop Settings: - Click on the Claude menu - Select "Settings..." - Click on "Developer" in the left-hand bar - Click on "Edit Config" 3. This will create/update the configuration file at: - macOS: `~/Library/Application Support/Claude/claude_desktop_config.json` - Windows: `%APPDATA%\Claude\claude_desktop_config.json` 4. Add the Akave MCP server configuration to the file: ```json { "mcpServers": { "akave": { "command": "npx", "args": [ "-y", "akave-mcp-js" ], "env": { "AKAVE_ACCESS_KEY_ID": "your_access_key", "AKAVE_SECRET_ACCESS_KEY": "your_secret_key", "AKAVE_ENDPOINT_URL": "your_endpoint_url" } } } } ``` 5. Restart Claude Desktop 6. You should see a slider icon in the bottom left corner of the input box. Click it to see the available Akave tools. ## Usage with Local LLMs (Ollama) 1. Install MCPHost: ```bash go install github.com/mark3labs/mcphost@latest ``` 2. Start MCPHost with your preferred model using the same configuration file: ```bash # Using default config location mcphost -m ollama:mistral # Or specify a custom config file mcphost -m ollama:mistral --config /path/to/your/mcp.json # For debugging mcphost --debug -m ollama:mistral --config /path/to/your/mcp.json ``` You can use any Ollama model, for example: - `ollama:mistral` - `ollama:qwen2.5` - `ollama:llama2` ## Available Tools The server provides the following MCP tools: 1. `list_buckets`: List all buckets in your Akave storage 2. `list_objects`: List objects in a bucket with optional prefix filtering 3. `get_object`: Read object contents from a bucket 4. `put_object`: Write a new object to a bucket 5. `get_signed_url`: Generate a signed URL for secure access to an object 6. `update_object`: Update an existing object 7. `delete_object`: Delete an object from a bucket 8. `copy_object`: Copy an object to another location 9. `create_bucket`: Create a new bucket 10. `delete_bucket`: Delete a bucket 11. `get_bucket_location`: Get the region/location of a bucket 12. `list_object_versions`: List all versions of objects (if versioning enabled) ## Example Usage ### Listing Buckets ```bash # The AI model will automatically use the list_buckets tool List all my buckets ``` ### Reading a File ```bash # The AI model will use the get_object tool Read the file 'example.md' from bucket 'my-bucket' ``` ### Uploading a File ```bash # The AI model will use the put_object tool Upload the content 'Hello World' to 'greeting.txt' in bucket 'my-bucket' ``` ## Troubleshooting ### Common Issues 1. **Connection Refused** - Ensure your Akave credentials are correct in the MCP configuration - Check if the endpoint URL is accessible - Verify your network connection 2. **File Reading Issues** - For markdown files, ensure proper encoding - For binary files, use appropriate tools - Check file permissions 3. **Local LLM Issues** - Ensure Ollama is running - Verify model compatibility - Check MCPHost configuration - Use `--debug` flag for detailed logs 4. **Claude Desktop Issues** - Check logs at: - macOS: `~/Library/Logs/Claude/mcp*.log` - Windows: `%APPDATA%\Claude\logs\mcp*.log` - Ensure Node.js is installed globally - Verify the configuration file syntax - Try restarting Claude Desktop ## Contributing Contributions are welcome! Please feel free to submit an issue or a pull request. ## Support For issues and feature requests, please create an issue in the GitHub repository.

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/akave-ai/akave-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server