Skip to main content
Glama
akaiserg

MCP Memory Tracker

by akaiserg

search_memories

Search through saved conversation memories using vector similarity to find relevant information from previous interactions.

Instructions

Search the vector store for memories that match the query.

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
queryYes

Implementation Reference

  • server.py:39-58 (handler)
    The @mcp.tool() decorator registers the search_memories handler function, which performs a vector store search using OpenAI client and returns matching memory texts.
    @mcp.tool() def search_memories(query: str): """Search the vector store for memories that match the query.""" vector_store = get_or_create_vector_store() print(vector_store.id) results = client.vector_stores.search( vector_store_id=vector_store.id, query=query, ) print(results) # Handle SyncPage response - iterate through the data content_text = [] for item in results.data: if hasattr(item, 'content'): for content in item.content: if content.type == "text": content_text.append(content.text) return {"status": "success", "results": content_text}
Install Server

Other Tools

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/akaiserg/mcp-memory-tracker'

If you have feedback or need assistance with the MCP directory API, please join our Discord server