Skip to main content
Glama

JetsonMCP

by ajeetraina
conftest.pyโ€ข1.57 kB
""" Pytest configuration and fixtures for JetsonMCP tests. """ import pytest from unittest.mock import AsyncMock, MagicMock from jetsonmcp.config import JetsonConfig from jetsonmcp.tools.base import BaseTool @pytest.fixture def mock_config(): """Provide a mock JetsonConfig for testing.""" config = JetsonConfig( ssh={ "host": "192.168.1.100", "username": "test_user", "password": "test_password", "port": 22, "timeout": 30, "retries": 3, "strict_host_checking": False, }, test_mode=True, mock_ssh_connections=True, ) return config @pytest.fixture def mock_ssh_client(): """Provide a mock SSH client.""" mock_client = MagicMock() mock_client.exec_command = AsyncMock() mock_client.close = MagicMock() return mock_client @pytest.fixture async def base_tool(mock_config): """Provide a base tool instance for testing.""" class TestTool(BaseTool): async def list_tools(self): return [] async def can_handle(self, tool_name: str) -> bool: return tool_name == "test_tool" async def execute(self, tool_name: str, arguments): return [{"test": "result"}] tool = TestTool(mock_config) yield tool await tool.cleanup() @pytest.fixture def mock_command_result(): """Provide mock command execution results.""" return { "stdout": "mock output", "stderr": "", "return_code": 0, }

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/ajeetraina/jetsonMCP'

If you have feedback or need assistance with the MCP directory API, please join our Discord server