Skip to main content
Glama

JetsonMCP

by ajeetraina
ARCHITECTURE.mdβ€’9.65 kB
# JetsonMCP Architecture This document describes the technical architecture and design decisions behind JetsonMCP. ## Overview JetsonMCP is built using a hexagonal (ports and adapters) architecture that separates business logic from external concerns. This design allows for easy testing, maintainability, and extensibility. ## Core Components ### 1. MCP Server (`server.py`) **Responsibility**: Main orchestration layer that handles MCP protocol communication and coordinates between tools. **Key Features**: - MCP protocol compliance - Tool registration and routing - Resource management - Error handling and recovery ### 2. Configuration Management (`config.py`) **Responsibility**: Centralized configuration handling with validation and type safety. **Features**: - Pydantic-based validation - Environment variable loading - Configuration sections for different domains - Runtime configuration validation ### 3. Tool Architecture (`tools/`) **Base Tool (`base.py`)**: - Abstract base class for all tools - SSH connection management - Common command execution patterns - Resource cleanup handling **Specialized Tools**: - `HardwareTool`: Power management, temperature monitoring, GPIO control - `AIWorkloadsTool`: ML framework management, model deployment - `ContainersTool`: Docker and GPU container management - `SystemTool`: Basic system administration - Additional tools for specific domains ### 4. Utility Layer (`utils/`) **Logger (`logger.py`)**: - Centralized logging configuration - Multiple output handlers (console, file) - Level-based filtering ## Design Patterns ### 1. Command Pattern Each tool implements a command pattern where: - Actions are discrete, named operations - Parameters are validated using JSON schemas - Results are consistently structured ```python async def execute(self, tool_name: str, arguments: Dict[str, Any]) -> List[Any]: action = arguments.get("action") if action == "get_temperature": return await self._get_temperature() # ... other actions ``` ### 2. Factory Pattern The server uses a factory pattern to instantiate and manage tools: ```python def _setup_tools(self) -> None: self._tools["hardware"] = HardwareTool(self.config) self._tools["ai_workloads"] = AIWorkloadsTool(self.config) # ... other tools ``` ### 3. Strategy Pattern SSH connection management uses different strategies based on configuration: - Password authentication - Key-based authentication - Mock connections for testing ### 4. Observer Pattern Resource monitoring and state management use observer patterns for: - Temperature alerts - Resource utilization thresholds - System state changes ## Data Flow ``` β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ Claude AI │───▢│ MCP Server │───▢│ Tool Router β”‚ β”‚ β”‚ β”‚ β”‚ β”‚ β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚ β–Ό β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ Jetson Nano │◀───│ SSH Client │◀───│ Specific Tool β”‚ β”‚ β”‚ β”‚ β”‚ β”‚ β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ ``` 1. **Request Phase**: - Claude sends MCP request to server - Server validates and routes to appropriate tool - Tool executes SSH commands on Jetson 2. **Processing Phase**: - Commands execute on Jetson hardware - Results are processed and structured - Error handling and recovery 3. **Response Phase**: - Structured data returned through tool - Server formats MCP response - Claude receives actionable information ## Error Handling Strategy ### 1. Layered Error Handling ``` Application Layer ──▢ User-friendly messages β”‚ Tool Layer ──▢ Domain-specific errors β”‚ SSH Layer ──▢ Connection/command errors β”‚ Transport Layer ──▢ Network/protocol errors ``` ### 2. Error Types - **Configuration Errors**: Invalid settings, missing credentials - **Connection Errors**: SSH failures, network issues - **Command Errors**: Failed command execution, permission issues - **Hardware Errors**: Device-specific failures, thermal issues ### 3. Recovery Strategies - **Retry Logic**: Exponential backoff for transient failures - **Fallback Commands**: Alternative approaches for common operations - **Graceful Degradation**: Partial functionality when components fail ## Security Architecture ### 1. Authentication - SSH key-based authentication (preferred) - Password authentication (fallback) - Host key verification - Connection timeouts ### 2. Authorization - Sudo privilege management - Command validation and sanitization - Path traversal protection - Resource access controls ### 3. Data Protection - Credential encryption in transit - Secure credential storage - Audit logging - Session management ## Performance Considerations ### 1. Connection Pooling - SSH connection reuse - Connection health monitoring - Automatic reconnection - Resource cleanup ### 2. Command Optimization - Batched operations where possible - Caching for expensive operations - Parallel execution for independent tasks - Result streaming for large outputs ### 3. Resource Management - Memory-conscious data structures - Lazy loading for large datasets - Garbage collection optimization - Connection lifecycle management ## Testing Strategy ### 1. Test Categories - **Unit Tests**: Individual function testing - **Integration Tests**: Tool interaction testing - **End-to-End Tests**: Full workflow testing - **Performance Tests**: Load and stress testing ### 2. Mock Strategy ```python # Mock SSH connections for unit testing if self.config.test_mode and self.config.mock_ssh_connections: return {"stdout": "mock output", "stderr": "", "return_code": 0} ``` ### 3. Test Infrastructure - Pytest-based test suite - Docker containers for isolation - CI/CD integration - Coverage reporting ## Extensibility ### 1. Adding New Tools 1. Inherit from `BaseTool` 2. Implement required abstract methods 3. Register in server configuration 4. Add tests and documentation ### 2. Hardware Platform Support - Abstract hardware interfaces - Platform-specific implementations - Feature detection and fallbacks - Configuration-driven behavior ### 3. Protocol Extensions - MCP resource providers - Custom message types - Streaming capabilities - Notification systems ## Deployment Architecture ### 1. Development Setup ``` Developer Machine Jetson Nano β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ Claude β”‚ β”‚ β”‚ β”‚ Desktop β”‚ β”‚ SSH Server β”‚ β”‚ β”‚ β”‚ β”‚ β”‚ JetsonMCP │───▢│ Hardware β”‚ β”‚ Server β”‚ β”‚ AI Worklds β”‚ β”‚ β”‚ β”‚ Containers β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ ``` ### 2. Production Setup ``` Edge Network β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ Edge Gateway Jetson Cluster β”‚ β”‚ β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ β”‚ β”‚ JetsonMCP │─────▢│ Jetson #1 β”‚ β”‚ β”‚ β”‚ Proxy β”‚ β”‚ Jetson #2 β”‚ β”‚ β”‚ β”‚ β”‚ β”‚ Jetson #3 β”‚ β”‚ β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚ β–Ό Cloud Management β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ Monitoring β”‚ β”‚ Analytics β”‚ β”‚ Updates β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ ``` ## Future Architecture Considerations ### 1. Scalability - Multi-Jetson management - Load balancing across devices - Distributed model serving - Edge cluster orchestration ### 2. AI/ML Pipeline Integration - MLOps workflow integration - Model versioning and deployment - A/B testing frameworks - Performance monitoring ### 3. IoT Integration - Sensor data ingestion - Real-time processing pipelines - Edge-to-cloud data sync - Device fleet management ## Conclusion JetsonMCP's architecture prioritizes: - **Modularity**: Clear separation of concerns - **Testability**: Comprehensive testing strategy - **Extensibility**: Easy addition of new capabilities - **Reliability**: Robust error handling and recovery - **Security**: Multi-layered security approach - **Performance**: Optimized for edge computing constraints This architecture provides a solid foundation for edge AI system management while remaining flexible enough to adapt to future requirements.

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/ajeetraina/jetsonMCP'

If you have feedback or need assistance with the MCP directory API, please join our Discord server