Skip to main content
Glama

search_episodes

Search knowledge episodes to find relevant information and patterns from user corrections, helping identify common standards and configuration updates.

Instructions

Search knowledge episodes

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
limitNoMax results
queryYesSearch query

Implementation Reference

  • Main handler function implementing the search_episodes tool. Performs full-text search (FTS) on the episodes table using SQLite, with fallback to LIKE search. Returns matching episodes with metadata.
    async def _search_episodes(self, query: str, limit: int = 10) -> Dict[str, Any]: """Search episodes using FTS""" try: with sqlite3.connect(self.db_path) as conn: conn.row_factory = sqlite3.Row # Use FTS search if available, fallback to LIKE try: cursor = conn.execute(""" SELECT e.id, e.name, e.content, e.source, e.timestamp, rank FROM episodes_search JOIN episodes e ON episodes_search.rowid = e.id WHERE episodes_search MATCH ? ORDER BY rank LIMIT ? """, (query, limit)) except sqlite3.OperationalError: # Fallback to simple search cursor = conn.execute(""" SELECT id, name, content, source, timestamp FROM episodes WHERE name LIKE ? OR content LIKE ? ORDER BY timestamp DESC LIMIT ? """, (f"%{query}%", f"%{query}%", limit)) episodes = [dict(row) for row in cursor.fetchall()] return { "success": True, "query": query, "results": episodes, "count": len(episodes) } except Exception as e: return {"success": False, "error": str(e)}
  • JSON Schema definition for the search_episodes tool input parameters: query (required string), limit (optional integer default 10).
    Tool( name="search_episodes", description="Search knowledge episodes", inputSchema={ "type": "object", "properties": { "query": {"type": "string", "description": "Search query"}, "limit": {"type": "integer", "description": "Max results", "default": 10}, }, "required": ["query"], }, ),
  • Tool dispatch/registration in the main call_tool handler: matches tool name and calls the _search_episodes implementation.
    elif name == "search_episodes": results = await self._search_episodes( arguments["query"], arguments.get("limit", 10) ) return [TextContent(type="text", text=json.dumps(results))]
  • Identical handler implementation in the enhanced server variant.
    async def _search_episodes(self, query: str, limit: int = 10) -> Dict[str, Any]: """Search episodes using FTS""" try: with sqlite3.connect(self.db_path) as conn: conn.row_factory = sqlite3.Row try: cursor = conn.execute(""" SELECT e.id, e.name, e.content, e.source, e.timestamp, rank FROM episodes_search JOIN episodes e ON episodes_search.rowid = e.id WHERE episodes_search MATCH ? ORDER BY rank LIMIT ? """, (query, limit)) except sqlite3.OperationalError: cursor = conn.execute(""" SELECT id, name, content, source, timestamp FROM episodes WHERE name LIKE ? OR content LIKE ? ORDER BY timestamp DESC LIMIT ? """, (f"%{query}%", f"%{query}%", limit)) episodes = [dict(row) for row in cursor.fetchall()] return { "success": True, "query": query, "results": episodes, "count": len(episodes) } except Exception as e: return {"success": False, "error": str(e)}
  • Helper classifying search_episodes as SIMPLE task complexity for cost-optimized model routing (e.g., to cheaper models like Gemini Flash).
    "search_episodes": TaskComplexity.SIMPLE,

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/airmcp-com/mcp-standards'

If you have feedback or need assistance with the MCP directory API, please join our Discord server