Skip to main content
Glama

MCP Standards

by airmcp-com
ARCHITECTURE.md11.4 kB
# MCP Standards - System Architecture **Last Updated**: 2025-10-14 --- ## Executive Summary MCP Standards is a self-learning AI standards system that automatically learns from corrections and updates configuration files: 1. **MindsDB** - Federated data access across 200+ sources via single MCP server 2. **Strata** - Progressive tool discovery and intelligent routing 3. **SQLite Knowledge Engine** - Local-first memory with full-text search This architecture eliminates the complexity of managing dozens of MCP servers while providing enterprise-grade data access, intelligent tool selection, and persistent knowledge storage. --- ## Core Architecture ``` ┌─────────────────────────────────────────────────────────────┐ │ Claude Code/Desktop │ │ (User Interface Layer) │ └─────────────────────┬───────────────────────────────────────┘ │ ┌───────┼───────┐ │ │ │ ▼ ▼ ▼ ┌────────┐ ┌─────┐ ┌──────────┐ │MindsDB │ │Strata│ │ Local │ │ MCP │ │ MCP │ │Knowledge │ │Server │ │Router│ │ Engine │ └────┬───┘ └──┬──┘ └────┬─────┘ │ │ │ │ │ ▼ │ │ ┌─────────┐ │ │ │SQLite DB│ │ │ │+FTS5 │ │ │ └─────────┘ │ │ │ ▼ │ ┌─────────────┐ │ │Progressive │ │ │Tool │ │ │Discovery │ │ └─────────────┘ │ ▼ ┌─────────────────┐ │ Federated Data │ │ • 200+ Sources │ │ • Real-time │ │ • SQL Interface │ └─────────────────┘ ``` --- ## Component Architecture ### 1. MindsDB MCP Server (Data Federation Layer) **Purpose**: Single unified gateway for all data access needs **Capabilities**: - **200+ Data Sources**: Databases, SaaS apps, APIs, file systems - **Federated Queries**: Cross-source joins and analytics - **AI-Native Operations**: Vector search, embeddings, ML models - **Enterprise Security**: Audit trails, governance, performance optimization **Key Tools**: ```json { "list_databases": "Discover available data sources", "query": "Execute federated queries across all sources", "create_model": "Deploy ML models for predictions", "create_knowledge_base": "Setup RAG with vector search" } ``` **Configuration**: ```json { "mindsdb": { "command": "docker", "args": ["run", "-p", "47334:47334", "mindsdb/mindsdb"] } } ``` ### 2. Strata MCP Router (Tool Discovery Layer) **Purpose**: Progressive tool discovery without context overload **Discovery Pattern**: ``` Intent → Integration → Category → Action ``` **Benefits**: - **Scalable**: Handles thousands of tools without token explosion - **Progressive**: Step-by-step drill-down prevents overwhelm - **Intelligent**: Context-aware tool recommendation - **Multi-App**: Seamless workflows across applications **Configuration**: ```json { "strata": { "command": "npx", "args": ["-y", "strata-mcp"] } } ``` ### 3. Local Knowledge Engine (Memory Layer) **Purpose**: Persistent knowledge storage with full-text search **Components**: - **SQLite Database**: Single-file storage with FTS5 search - **Automatic Logging**: Captures significant tool executions - **Semantic Extraction**: Converts actions to knowledge episodes - **Cross-Session Memory**: Persistent context across interactions **Schema**: ```sql CREATE TABLE episodes ( id INTEGER PRIMARY KEY, name TEXT NOT NULL, content TEXT NOT NULL, source TEXT NOT NULL, timestamp DATETIME DEFAULT CURRENT_TIMESTAMP, metadata JSON ); CREATE VIRTUAL TABLE episodes_fts USING fts5( name, content, source, content=episodes ); ``` --- ## Data Flow Architecture ### 1. Knowledge Capture Flow ``` User Action → Tool Execution → Semantic Extractor → SQLite Storage ↓ ↓ ↓ ↓ Claude Code → MCP Tool Call → Knowledge Episode → Local Memory ``` ### 2. Query Resolution Flow ``` User Query → Local Search → MindsDB Federation → Strata Discovery ↓ ↓ ↓ ↓ Natural → SQLite FTS → Cross-Source Query → Progressive Tools Language Results Real-time Data Guided Selection ``` ### 3. Tool Orchestration Flow ``` Intent → Strata Router → Tool Selection → MindsDB Execution → Memory Update ↓ ↓ ↓ ↓ ↓ "Research" → Categories → Specific Tool → Data Query → Episode Stored ``` --- ## Configuration Strategy ### Unified MCP Configuration **Claude Desktop** (`~/Library/Application Support/Claude/mcp.json`): ```json { "mcpServers": { "mindsdb": { "command": "docker", "args": ["run", "-p", "47334:47334", "mindsdb/mindsdb"] }, "strata": { "command": "npx", "args": ["-y", "strata-mcp"] }, "local-memory": { "command": "uv", "args": ["--directory", "./mcp-servers/local-memory", "run", "server.py"] } } } ``` **Claude Desktop Config** (`~/Library/Application Support/Claude/claude_desktop_config.json`): ```json { "projects": { "/path/to/your/project": { "mcpServers": { "mindsdb": { "type": "stdio", "command": "docker", "args": ["run", "-p", "47334:47334", "mindsdb/mindsdb"] }, "strata": { "type": "stdio", "command": "npx", "args": ["-y", "strata-mcp"] }, "local-memory": { "type": "stdio", "command": "uv", "args": ["--directory", "./mcp-servers/local-memory", "run", "server.py"] } } } } } ``` ### Scoped Configuration **Project-Level** (`.mcp.json`): ```json { "mcpServers": { "local-memory": { "type": "stdio", "command": "uv", "args": ["--directory", "./mcp-servers/local-memory", "run", "server.py"], "env": { "DB_PATH": "./knowledge.db" } } } } ``` --- ## Security and Governance ### Data Security 1. **Local-First**: SQLite knowledge stored locally, no cloud dependency 2. **Federated Security**: MindsDB handles data source authentication 3. **Permission-Based**: Strata enforces tool access controls 4. **Audit Trails**: All operations logged for compliance ### Enterprise Controls ```json { "permissions": { "allow": [ "mindsdb:query:read", "strata:discover:*", "local-memory:*" ], "deny": [ "mindsdb:model:create" ], "ask": [ "mindsdb:database:create" ] } } ``` --- ## Performance Characteristics ### Scalability Metrics | Component | Scale | Performance | Memory | |-----------|-------|-------------|---------| | MindsDB | 200+ sources | Real-time queries | ~500MB | | Strata | 1000+ tools | Progressive discovery | ~50MB | | SQLite | 1M+ episodes | Sub-second FTS | ~100MB | ### Optimization Strategies 1. **Intelligent Caching**: MindsDB caches frequent queries 2. **Progressive Loading**: Strata loads tools on-demand 3. **FTS Optimization**: SQLite indexes for fast search 4. **Connection Pooling**: Reuse database connections --- ## Integration Patterns ### Enterprise Integration ```python # Python SDK Usage from research_mcp import UnifiedMCP mcp = UnifiedMCP() # Query across all systems result = await mcp.query( "What changed in our Salesforce pipeline this week?", sources=["salesforce", "github", "local-memory"] ) # Progressive tool discovery tools = await mcp.discover_tools( intent="automate sales reporting", categories=["crm", "analytics"] ) ``` ### Agent Orchestration ```python # Multi-agent coordination from research_mcp.agents import ResearchAgent, ActionAgent research = ResearchAgent(knowledge_base="local-memory") action = ActionAgent(tool_router="strata") # Coordinated workflow findings = await research.investigate("competitor analysis") actions = await action.plan_from_research(findings) ``` --- ## Migration Strategy ### Phase 1: Foundation (Week 1) - [ ] Setup MindsDB MCP server - [ ] Configure basic Strata routing - [x] Migrate to SQLite with FTS5 - [ ] Test unified configuration ### Phase 2: Integration (Week 2) - [ ] Connect primary data sources to MindsDB - [ ] Configure Strata tool categories - [ ] Implement automatic knowledge capture - [ ] Setup cross-system queries ### Phase 3: Optimization (Week 3) - [ ] Performance tuning and caching - [ ] Advanced security configuration - [ ] Agent orchestration patterns - [ ] Enterprise governance setup ### Phase 4: Scale (Week 4) - [ ] Multi-user configuration - [ ] Team knowledge sharing - [ ] Advanced analytics dashboards - [ ] Production monitoring --- ## Monitoring and Observability ### Health Checks ```bash # MCP Server Status curl http://localhost:47334/health # MindsDB /mcp list # Strata tools sqlite3 knowledge.db "SELECT COUNT(*) FROM episodes" # Local memory ``` ### Metrics Collection - **Query Performance**: Response times across data sources - **Tool Usage**: Most frequently discovered/used tools - **Knowledge Growth**: Episodes created per day/week - **Error Rates**: Failed queries and tool executions --- ## Future Roadmap ### Short-term (3 months) - Agent-to-Agent (A2A) protocol integration - Advanced RAG with vector embeddings - Real-time collaboration features - Mobile/web interface ### Medium-term (6 months) - Multi-tenant enterprise deployment - Advanced analytics and insights - Workflow automation engine - Third-party MCP server registry ### Long-term (12 months) - Federated knowledge graphs - AI-driven process optimization - Cross-organization knowledge sharing - Regulatory compliance automation --- ## Conclusion This unified architecture positions Research MCP as a comprehensive AI knowledge copilot that scales from individual use to enterprise deployment. By combining MindsDB's data federation, Strata's progressive tool discovery, and local SQLite knowledge storage, we create a system that is both powerful and practical. The architecture eliminates the complexity of managing multiple MCP servers while providing enterprise-grade capabilities for data access, tool discovery, and knowledge management. This foundation enables rapid development of sophisticated AI workflows while maintaining simplicity for everyday use.

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/airmcp-com/mcp-standards'

If you have feedback or need assistance with the MCP directory API, please join our Discord server