Skip to main content
Glama

MCP Standards

by airmcp-com
CLAUDE.md•13.1 kB
# Claude Code Configuration - SPARC Development Environment ## 🚨 CRITICAL: CONCURRENT EXECUTION & FILE MANAGEMENT **ABSOLUTE RULES**: 1. ALL operations MUST be concurrent/parallel in a single message 2. **NEVER save working files, text/mds and tests to the root folder** 3. ALWAYS organize files in appropriate subdirectories 4. **USE CLAUDE CODE'S TASK TOOL** for spawning agents concurrently, not just MCP ### ⚔ GOLDEN RULE: "1 MESSAGE = ALL RELATED OPERATIONS" **MANDATORY PATTERNS:** - **TodoWrite**: ALWAYS batch ALL todos in ONE call (5-10+ todos minimum) - **Task tool (Claude Code)**: ALWAYS spawn ALL agents in ONE message with full instructions - **File operations**: ALWAYS batch ALL reads/writes/edits in ONE message - **Bash commands**: ALWAYS batch ALL terminal operations in ONE message - **Memory operations**: ALWAYS batch ALL memory store/retrieve in ONE message ### šŸŽÆ CRITICAL: Claude Code Task Tool for Agent Execution **Claude Code's Task tool is the PRIMARY way to spawn agents:** ```javascript // āœ… CORRECT: Use Claude Code's Task tool for parallel agent execution [Single Message]: Task("Research agent", "Analyze requirements and patterns...", "researcher") Task("Coder agent", "Implement core features...", "coder") Task("Tester agent", "Create comprehensive tests...", "tester") Task("Reviewer agent", "Review code quality...", "reviewer") Task("Architect agent", "Design system architecture...", "system-architect") ``` **MCP tools are ONLY for coordination setup:** - `mcp__claude-flow__swarm_init` - Initialize coordination topology - `mcp__claude-flow__agent_spawn` - Define agent types for coordination - `mcp__claude-flow__task_orchestrate` - Orchestrate high-level workflows ### šŸ“ File Organization Rules **NEVER save to root folder. Use these directories:** - `/src` - Source code files - `/tests` - Test files - `/docs` - Documentation and markdown files - `/config` - Configuration files - `/scripts` - Utility scripts - `/examples` - Example code ## Project Overview This project uses SPARC (Specification, Pseudocode, Architecture, Refinement, Completion) methodology with Claude-Flow orchestration for systematic Test-Driven Development. ## SPARC Commands ### Core Commands - `npx claude-flow sparc modes` - List available modes - `npx claude-flow sparc run <mode> "<task>"` - Execute specific mode - `npx claude-flow sparc tdd "<feature>"` - Run complete TDD workflow - `npx claude-flow sparc info <mode>` - Get mode details ### Batchtools Commands - `npx claude-flow sparc batch <modes> "<task>"` - Parallel execution - `npx claude-flow sparc pipeline "<task>"` - Full pipeline processing - `npx claude-flow sparc concurrent <mode> "<tasks-file>"` - Multi-task processing ### Build Commands - `npm run build` - Build project - `npm run test` - Run tests - `npm run lint` - Linting - `npm run typecheck` - Type checking ## SPARC Workflow Phases 1. **Specification** - Requirements analysis (`sparc run spec-pseudocode`) 2. **Pseudocode** - Algorithm design (`sparc run spec-pseudocode`) 3. **Architecture** - System design (`sparc run architect`) 4. **Refinement** - TDD implementation (`sparc tdd`) 5. **Completion** - Integration (`sparc run integration`) ## Code Style & Best Practices - **Modular Design**: Files under 500 lines - **Environment Safety**: Never hardcode secrets - **Test-First**: Write tests before implementation - **Clean Architecture**: Separate concerns - **Documentation**: Keep updated ## šŸš€ Available Agents (54 Total) ### Core Development `coder`, `reviewer`, `tester`, `planner`, `researcher` ### Swarm Coordination `hierarchical-coordinator`, `mesh-coordinator`, `adaptive-coordinator`, `collective-intelligence-coordinator`, `swarm-memory-manager` ### Consensus & Distributed `byzantine-coordinator`, `raft-manager`, `gossip-coordinator`, `consensus-builder`, `crdt-synchronizer`, `quorum-manager`, `security-manager` ### Performance & Optimization `perf-analyzer`, `performance-benchmarker`, `task-orchestrator`, `memory-coordinator`, `smart-agent` ### GitHub & Repository `github-modes`, `pr-manager`, `code-review-swarm`, `issue-tracker`, `release-manager`, `workflow-automation`, `project-board-sync`, `repo-architect`, `multi-repo-swarm` ### SPARC Methodology `sparc-coord`, `sparc-coder`, `specification`, `pseudocode`, `architecture`, `refinement` ### Specialized Development `backend-dev`, `mobile-dev`, `ml-developer`, `cicd-engineer`, `api-docs`, `system-architect`, `code-analyzer`, `base-template-generator` ### Testing & Validation `tdd-london-swarm`, `production-validator` ### Migration & Planning `migration-planner`, `swarm-init` ## šŸŽÆ Claude Code vs MCP Tools ### Claude Code Handles ALL EXECUTION: - **Task tool**: Spawn and run agents concurrently for actual work - File operations (Read, Write, Edit, MultiEdit, Glob, Grep) - Code generation and programming - Bash commands and system operations - Implementation work - Project navigation and analysis - TodoWrite and task management - Git operations - Package management - Testing and debugging ### MCP Tools ONLY COORDINATE: - Swarm initialization (topology setup) - Agent type definitions (coordination patterns) - Task orchestration (high-level planning) - Memory management - Neural features - Performance tracking - GitHub integration **KEY**: MCP coordinates the strategy, Claude Code's Task tool executes with real agents. ## šŸš€ Quick Setup ```bash # Add MCP servers (Claude Flow required, others optional) claude mcp add claude-flow npx claude-flow@alpha mcp start claude mcp add ruv-swarm npx ruv-swarm mcp start # Optional: Enhanced coordination claude mcp add flow-nexus npx flow-nexus@latest mcp start # Optional: Cloud features ``` ## MCP Tool Categories ### Coordination `swarm_init`, `agent_spawn`, `task_orchestrate` ### Monitoring `swarm_status`, `agent_list`, `agent_metrics`, `task_status`, `task_results` ### Memory & Neural `memory_usage`, `neural_status`, `neural_train`, `neural_patterns` ### GitHub Integration `github_swarm`, `repo_analyze`, `pr_enhance`, `issue_triage`, `code_review` ### System `benchmark_run`, `features_detect`, `swarm_monitor` ### Flow-Nexus MCP Tools (Optional Advanced Features) Flow-Nexus extends MCP capabilities with 70+ cloud-based orchestration tools: **Key MCP Tool Categories:** - **Swarm & Agents**: `swarm_init`, `swarm_scale`, `agent_spawn`, `task_orchestrate` - **Sandboxes**: `sandbox_create`, `sandbox_execute`, `sandbox_upload` (cloud execution) - **Templates**: `template_list`, `template_deploy` (pre-built project templates) - **Neural AI**: `neural_train`, `neural_patterns`, `seraphina_chat` (AI assistant) - **GitHub**: `github_repo_analyze`, `github_pr_manage` (repository management) - **Real-time**: `execution_stream_subscribe`, `realtime_subscribe` (live monitoring) - **Storage**: `storage_upload`, `storage_list` (cloud file management) **Authentication Required:** - Register: `mcp__flow-nexus__user_register` or `npx flow-nexus@latest register` - Login: `mcp__flow-nexus__user_login` or `npx flow-nexus@latest login` - Access 70+ specialized MCP tools for advanced orchestration ## šŸš€ Agent Execution Flow with Claude Code ### The Correct Pattern: 1. **Optional**: Use MCP tools to set up coordination topology 2. **REQUIRED**: Use Claude Code's Task tool to spawn agents that do actual work 3. **REQUIRED**: Each agent runs hooks for coordination 4. **REQUIRED**: Batch all operations in single messages ### Example Full-Stack Development: ```javascript // Single message with all agent spawning via Claude Code's Task tool [Parallel Agent Execution]: Task("Backend Developer", "Build REST API with Express. Use hooks for coordination.", "backend-dev") Task("Frontend Developer", "Create React UI. Coordinate with backend via memory.", "coder") Task("Database Architect", "Design PostgreSQL schema. Store schema in memory.", "code-analyzer") Task("Test Engineer", "Write Jest tests. Check memory for API contracts.", "tester") Task("DevOps Engineer", "Setup Docker and CI/CD. Document in memory.", "cicd-engineer") Task("Security Auditor", "Review authentication. Report findings via hooks.", "reviewer") // All todos batched together TodoWrite { todos: [...8-10 todos...] } // All file operations together Write "backend/server.js" Write "frontend/App.jsx" Write "database/schema.sql" ``` ## šŸ“‹ Agent Coordination Protocol ### Every Agent Spawned via Task Tool MUST: **1ļøāƒ£ BEFORE Work:** ```bash npx claude-flow@alpha hooks pre-task --description "[task]" npx claude-flow@alpha hooks session-restore --session-id "swarm-[id]" ``` **2ļøāƒ£ DURING Work:** ```bash npx claude-flow@alpha hooks post-edit --file "[file]" --memory-key "swarm/[agent]/[step]" npx claude-flow@alpha hooks notify --message "[what was done]" ``` **3ļøāƒ£ AFTER Work:** ```bash npx claude-flow@alpha hooks post-task --task-id "[task]" npx claude-flow@alpha hooks session-end --export-metrics true ``` ## šŸŽÆ Concurrent Execution Examples ### āœ… CORRECT WORKFLOW: MCP Coordinates, Claude Code Executes ```javascript // Step 1: MCP tools set up coordination (optional, for complex tasks) [Single Message - Coordination Setup]: mcp__claude-flow__swarm_init { topology: "mesh", maxAgents: 6 } mcp__claude-flow__agent_spawn { type: "researcher" } mcp__claude-flow__agent_spawn { type: "coder" } mcp__claude-flow__agent_spawn { type: "tester" } // Step 2: Claude Code Task tool spawns ACTUAL agents that do the work [Single Message - Parallel Agent Execution]: // Claude Code's Task tool spawns real agents concurrently Task("Research agent", "Analyze API requirements and best practices. Check memory for prior decisions.", "researcher") Task("Coder agent", "Implement REST endpoints with authentication. Coordinate via hooks.", "coder") Task("Database agent", "Design and implement database schema. Store decisions in memory.", "code-analyzer") Task("Tester agent", "Create comprehensive test suite with 90% coverage.", "tester") Task("Reviewer agent", "Review code quality and security. Document findings.", "reviewer") // Batch ALL todos in ONE call TodoWrite { todos: [ {id: "1", content: "Research API patterns", status: "in_progress", priority: "high"}, {id: "2", content: "Design database schema", status: "in_progress", priority: "high"}, {id: "3", content: "Implement authentication", status: "pending", priority: "high"}, {id: "4", content: "Build REST endpoints", status: "pending", priority: "high"}, {id: "5", content: "Write unit tests", status: "pending", priority: "medium"}, {id: "6", content: "Integration tests", status: "pending", priority: "medium"}, {id: "7", content: "API documentation", status: "pending", priority: "low"}, {id: "8", content: "Performance optimization", status: "pending", priority: "low"} ]} // Parallel file operations Bash "mkdir -p app/{src,tests,docs,config}" Write "app/package.json" Write "app/src/server.js" Write "app/tests/server.test.js" Write "app/docs/API.md" ``` ### āŒ WRONG (Multiple Messages): ```javascript Message 1: mcp__claude-flow__swarm_init Message 2: Task("agent 1") Message 3: TodoWrite { todos: [single todo] } Message 4: Write "file.js" // This breaks parallel coordination! ``` ## Performance Benefits - **84.8% SWE-Bench solve rate** - **32.3% token reduction** - **2.8-4.4x speed improvement** - **27+ neural models** ## Hooks Integration ### Pre-Operation - Auto-assign agents by file type - Validate commands for safety - Prepare resources automatically - Optimize topology by complexity - Cache searches ### Post-Operation - Auto-format code - Train neural patterns - Update memory - Analyze performance - Track token usage ### Session Management - Generate summaries - Persist state - Track metrics - Restore context - Export workflows ## Advanced Features (v2.0.0) - šŸš€ Automatic Topology Selection - ⚔ Parallel Execution (2.8-4.4x speed) - 🧠 Neural Training - šŸ“Š Bottleneck Analysis - šŸ¤– Smart Auto-Spawning - šŸ›”ļø Self-Healing Workflows - šŸ’¾ Cross-Session Memory - šŸ”— GitHub Integration ## Integration Tips 1. Start with basic swarm init 2. Scale agents gradually 3. Use memory for context 4. Monitor progress regularly 5. Train patterns from success 6. Enable hooks automation 7. Use GitHub tools first ## Support - Documentation: https://github.com/ruvnet/claude-flow - Issues: https://github.com/ruvnet/claude-flow/issues - Flow-Nexus Platform: https://flow-nexus.ruv.io (registration required for cloud features) --- Remember: **Claude Flow coordinates, Claude Code creates!** # important-instruction-reminders Do what has been asked; nothing more, nothing less. NEVER create files unless they're absolutely necessary for achieving your goal. ALWAYS prefer editing an existing file to creating a new one. NEVER proactively create documentation files (*.md) or README files. Only create documentation files if explicitly requested by the User. Never save working files, text/mds and tests to the root folder.

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/airmcp-com/mcp-standards'

If you have feedback or need assistance with the MCP directory API, please join our Discord server