Skip to main content
Glama

MCP Standards

by airmcp-com
examples.md•10.4 kB
# Pair Programming Examples Real-world examples and scenarios for pair programming sessions. ## Example 1: Feature Implementation ### Scenario Implementing a user authentication feature with JWT tokens. ### Session Setup ```bash claude-flow pair --start \ --mode switch \ --agent senior-dev \ --focus implement \ --verify \ --test ``` ### Session Flow ``` šŸ‘„ Starting pair programming for authentication feature... [DRIVER: You - 10 minutes] /explain JWT authentication flow > AI explains JWT concepts and best practices /suggest implementation approach > AI suggests using middleware pattern with refresh tokens # You write the basic auth middleware structure [SWITCH TO NAVIGATOR] [NAVIGATOR: AI - 10 minutes] /implement JWT token generation with refresh tokens > AI generates secure token implementation /test-gen > AI creates comprehensive test suite [SWITCH TO DRIVER] [DRIVER: You - 10 minutes] # You refine the implementation /review --security > AI performs security review, suggests improvements /commit --message "feat: JWT authentication with refresh tokens" āœ… Truth Score: 0.98 - Committed successfully ``` ## Example 2: Bug Fixing Session ### Scenario Debugging a memory leak in a Node.js application. ### Session Setup ```bash claude-flow pair --start \ --mode navigator \ --agent debugger-expert \ --focus debug \ --trace ``` ### Session Flow ``` šŸ‘„ Starting debugging session... /status > Analyzing application for memory issues... /perf --profile > Memory usage growing: 150MB → 450MB over 10 minutes /find "new EventEmitter" --regex > Found 3 instances of EventEmitter creation /inspect eventEmitters --deep > Discovering listeners not being removed /suggest fix for memory leak > AI suggests: "Add removeListener in cleanup functions" /implement cleanup functions for all event emitters > AI generates proper cleanup code /test > Memory stable at 150MB āœ… /commit --message "fix: memory leak in event emitters" ``` ## Example 3: Test-Driven Development ### Scenario Building a shopping cart feature using TDD. ### Session Setup ```bash claude-flow pair --start \ --mode tdd \ --agent tdd-specialist \ --test-first ``` ### Session Flow ``` šŸ‘„ TDD Session: Shopping Cart Feature [RED PHASE] /test-gen "add item to cart" > AI writes failing test: āœ— should add item to cart āœ— should update quantity for existing item āœ— should calculate total price [GREEN PHASE] /implement minimal cart functionality > You write just enough code to pass tests /test > Tests passing: 3/3 āœ… [REFACTOR PHASE] /refactor --pattern repository > AI refactors to repository pattern /test > Tests still passing: 3/3 āœ… [NEXT CYCLE] /test-gen "remove item from cart" > AI writes new failing tests... ``` ## Example 4: Code Refactoring ### Scenario Refactoring legacy code to modern patterns. ### Session Setup ```bash claude-flow pair --start \ --mode driver \ --focus refactor \ --verify \ --threshold 0.98 ``` ### Session Flow ``` šŸ‘„ Refactoring Session: Modernizing UserService /analyze UserService.js > AI identifies: - Callback hell (5 levels deep) - No error handling - Tight coupling - No tests /suggest refactoring plan > AI suggests: 1. Convert callbacks to async/await 2. Add error boundaries 3. Extract dependencies 4. Add unit tests /test-gen --before-refactor > AI generates tests for current behavior /refactor callbacks to async/await # You refactor with AI guidance /test > All tests passing āœ… /review --compare > AI shows before/after comparison > Code complexity: 35 → 12 > Truth score: 0.99 āœ… /commit --message "refactor: modernize UserService with async/await" ``` ## Example 5: Learning Session ### Scenario Learning React hooks with AI mentorship. ### Session Setup ```bash claude-flow pair --start \ --mode mentor \ --agent react-expert \ --pace slow \ --examples ``` ### Session Flow ``` šŸ‘„ Learning Session: React Hooks /learn useState hook > AI explains with interactive examples /example custom hook for API calls > AI shows best practice implementation: ```javascript function useApi(url) { const [data, setData] = useState(null); const [loading, setLoading] = useState(true); const [error, setError] = useState(null); useEffect(() => { // Implementation explained step by step }, [url]); return { data, loading, error }; } ``` /implement my own custom hook # You write with AI guidance /review --educational > AI provides detailed feedback with learning points /quiz react hooks > AI tests your understanding > Score: 8/10 - Good progress! ``` ## Example 6: Performance Optimization ### Scenario Optimizing a slow React application. ### Session Setup ```bash claude-flow pair --start \ --mode switch \ --agent performance-expert \ --focus optimize \ --profile ``` ### Session Flow ``` šŸ‘„ Performance Optimization Session /perf --profile > React DevTools Profiler Results: - ProductList: 450ms render - CartSummary: 200ms render - Unnecessary re-renders: 15 /suggest optimizations for ProductList > AI suggests: 1. Add React.memo 2. Use useMemo for expensive calculations 3. Implement virtualization for long lists /implement React.memo and useMemo # You implement with AI guidance /perf --profile > ProductList: 45ms render (90% improvement!) āœ… /implement virtualization with react-window > AI implements virtual scrolling /perf --profile > ProductList: 12ms render (97% improvement!) āœ… > FPS: 60 stable āœ… /commit --message "perf: optimize ProductList with memoization and virtualization" ``` ## Example 7: API Development ### Scenario Building a RESTful API with Express. ### Session Setup ```bash claude-flow pair --start \ --mode navigator \ --agent backend-expert \ --focus implement \ --test ``` ### Session Flow ``` šŸ‘„ API Development Session /design REST API for blog platform > AI designs endpoints: POST /api/posts GET /api/posts GET /api/posts/:id PUT /api/posts/:id DELETE /api/posts/:id /implement CRUD endpoints with validation > AI implements with Express + Joi validation /test-gen --integration > AI generates integration tests /security --api > AI adds: - Rate limiting - Input sanitization - JWT authentication - CORS configuration /document --openapi > AI generates OpenAPI documentation /test --integration > All endpoints tested: 15/15 āœ… /deploy --staging > API deployed to staging environment ``` ## Example 8: Database Migration ### Scenario Migrating from MongoDB to PostgreSQL. ### Session Setup ```bash claude-flow pair --start \ --mode switch \ --agent database-expert \ --verify \ --test ``` ### Session Flow ``` šŸ‘„ Database Migration Session /analyze MongoDB schema > AI maps current structure: - users collection → users table - posts collection → posts table - Embedded comments → comments table with FK /design PostgreSQL schema > AI creates normalized schema with relations /implement migration script # You write migration with AI assistance /test --migration --sample-data > Migration successful for 10,000 records āœ… /implement data access layer > AI creates repository pattern implementation /test --integration > All queries working correctly āœ… /verify data integrity > Truth score: 0.995 āœ… > No data loss detected ``` ## Example 9: CI/CD Pipeline ### Scenario Setting up GitHub Actions CI/CD pipeline. ### Session Setup ```bash claude-flow pair --start \ --mode navigator \ --agent devops-expert \ --focus implement ``` ### Session Flow ``` šŸ‘„ CI/CD Pipeline Setup /implement GitHub Actions workflow > AI creates .github/workflows/ci.yml: - Build on push/PR - Run tests - Check coverage - Deploy to staging /test --ci --dry-run > Pipeline simulation successful āœ… /implement deployment to production > AI adds: - Manual approval step - Rollback capability - Health checks - Notifications /security --scan-pipeline > AI adds security scanning: - Dependency scanning - Container scanning - Secret scanning /commit --message "ci: complete CI/CD pipeline with security scanning" ``` ## Example 10: Mobile App Development ### Scenario Building a React Native mobile feature. ### Session Setup ```bash claude-flow pair --start \ --mode switch \ --agent mobile-expert \ --language react-native \ --test ``` ### Session Flow ``` šŸ‘„ Mobile Development Session /implement offline-first data sync > AI implements: - Local SQLite storage - Queue for pending changes - Sync on connection restore - Conflict resolution /test --device ios simulator > Feature working on iOS āœ… /test --device android emulator > Feature working on Android āœ… /optimize --mobile > AI optimizes: - Reduces bundle size by 30% - Implements lazy loading - Adds image caching /review --accessibility > AI ensures: - Screen reader support - Proper contrast ratios - Touch target sizes /commit --message "feat: offline-first sync with optimizations" ``` ## Common Patterns ### Starting Patterns ```bash # Quick start for common scenarios claude-flow pair --template <template> ``` Available templates: - `feature` - New feature development - `bugfix` - Bug fixing session - `refactor` - Code refactoring - `optimize` - Performance optimization - `test` - Test writing - `review` - Code review - `learn` - Learning session ### Session Commands Flow #### Typical Feature Development ``` /start → /explain → /design → /implement → /test → /review → /commit → /end ``` #### Typical Bug Fix ``` /start → /reproduce → /debug → /trace → /fix → /test → /verify → /commit → /end ``` #### Typical Refactoring ``` /start → /analyze → /plan → /test-gen → /refactor → /test → /review → /commit → /end ``` ## Best Practices from Examples 1. **Always Start with Context** - Use `/explain` or `/analyze` 2. **Test Early and Often** - Run tests after each change 3. **Verify Before Commit** - Check truth scores 4. **Document Decisions** - Use `/note` for important choices 5. **Review Security** - Always run `/security` for sensitive code 6. **Profile Performance** - Use `/perf` for optimization 7. **Save Sessions** - Use `/save` for complex work ## Related Documentation - [Getting Started](./README.md) - [Session Management](./session.md) - [Commands Reference](./commands.md) - [Configuration](./config.md)

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/airmcp-com/mcp-standards'

If you have feedback or need assistance with the MCP directory API, please join our Discord server