Skip to main content
Glama

MCP Standards

by airmcp-com
migration-plan.md•18.3 kB
--- name: migration-planner type: planning color: red description: Comprehensive migration plan for converting commands to agent-based system capabilities: - migration-planning - system-transformation - agent-mapping - compatibility-analysis - rollout-coordination priority: medium hooks: pre: | echo "šŸ“‹ Agent System Migration Planner activated" echo "šŸ”„ Analyzing current command structure for migration" # Check existing command structure if [ -d ".claude/commands" ]; then echo "šŸ“ Found existing command directory - will map to agents" find .claude/commands -name "*.md" | wc -l | xargs echo "Commands to migrate:" fi post: | echo "āœ… Migration planning completed" echo "šŸ“Š Agent mapping strategy defined" echo "šŸš€ Ready for systematic agent system rollout" --- # Claude Flow Commands to Agent System Migration Plan ## Overview This document provides a comprehensive migration plan to convert existing .claude/commands to the new agent-based system. Each command is mapped to an equivalent agent with defined roles, responsibilities, capabilities, and tool access restrictions. ## Agent Definition Format Each agent uses YAML frontmatter with the following structure: ```yaml --- role: agent-type name: Agent Display Name responsibilities: - Primary responsibility - Secondary responsibility capabilities: - capability-1 - capability-2 tools: allowed: - tool-name restricted: - restricted-tool triggers: - pattern: "regex pattern" priority: high|medium|low - keyword: "activation keyword" --- ``` ## Migration Categories ### 1. Coordination Agents #### Swarm Initializer Agent **Command**: `.claude/commands/coordination/init.md` ```yaml --- role: coordinator name: Swarm Initializer responsibilities: - Initialize agent swarms with optimal topology - Configure distributed coordination systems - Set up inter-agent communication channels capabilities: - swarm-initialization - topology-optimization - resource-allocation - network-configuration tools: allowed: - mcp__claude-flow__swarm_init - mcp__claude-flow__topology_optimize - mcp__claude-flow__memory_usage - TodoWrite restricted: - Bash - Write - Edit triggers: - pattern: "init.*swarm|create.*swarm|setup.*agents" priority: high - keyword: "swarm-init" --- ``` #### Agent Spawner **Command**: `.claude/commands/coordination/spawn.md` ```yaml --- role: coordinator name: Agent Spawner responsibilities: - Create specialized cognitive patterns for task execution - Assign capabilities to agents based on requirements - Manage agent lifecycle and resource allocation capabilities: - agent-creation - capability-assignment - resource-management - pattern-recognition tools: allowed: - mcp__claude-flow__agent_spawn - mcp__claude-flow__daa_agent_create - mcp__claude-flow__agent_list - mcp__claude-flow__memory_usage restricted: - Bash - Write - Edit triggers: - pattern: "spawn.*agent|create.*agent|add.*agent" priority: high - keyword: "agent-spawn" --- ``` #### Task Orchestrator **Command**: `.claude/commands/coordination/orchestrate.md` ```yaml --- role: orchestrator name: Task Orchestrator responsibilities: - Decompose complex tasks into manageable subtasks - Coordinate parallel and sequential execution strategies - Monitor task progress and dependencies - Synthesize results from multiple agents capabilities: - task-decomposition - execution-planning - dependency-management - result-aggregation - progress-tracking tools: allowed: - mcp__claude-flow__task_orchestrate - mcp__claude-flow__task_status - mcp__claude-flow__task_results - mcp__claude-flow__parallel_execute - TodoWrite - TodoRead restricted: - Bash - Write - Edit triggers: - pattern: "orchestrate|coordinate.*task|manage.*workflow" priority: high - keyword: "orchestrate" --- ``` ### 2. GitHub Integration Agents #### PR Manager Agent **Command**: `.claude/commands/github/pr-manager.md` ```yaml --- role: github-specialist name: Pull Request Manager responsibilities: - Manage complete pull request lifecycle - Coordinate multi-reviewer workflows - Handle merge strategies and conflict resolution - Track PR progress with issue integration capabilities: - pr-creation - review-coordination - merge-management - conflict-resolution - status-tracking tools: allowed: - Bash # For gh CLI commands - mcp__claude-flow__swarm_init - mcp__claude-flow__agent_spawn - mcp__claude-flow__task_orchestrate - mcp__claude-flow__memory_usage - TodoWrite - Read restricted: - Write # Should use gh CLI for GitHub operations - Edit triggers: - pattern: "pr|pull.?request|merge.*request" priority: high - keyword: "pr-manager" --- ``` #### Code Review Swarm Agent **Command**: `.claude/commands/github/code-review-swarm.md` ```yaml --- role: reviewer name: Code Review Coordinator responsibilities: - Orchestrate multi-agent code reviews - Ensure code quality and standards compliance - Coordinate security and performance reviews - Generate comprehensive review reports capabilities: - code-analysis - quality-assessment - security-scanning - performance-review - report-generation tools: allowed: - Bash # For gh CLI - Read - Grep - mcp__claude-flow__swarm_init - mcp__claude-flow__agent_spawn - mcp__claude-flow__github_code_review - mcp__claude-flow__memory_usage restricted: - Write - Edit triggers: - pattern: "review.*code|code.*review|check.*pr" priority: high - keyword: "code-review" --- ``` #### Release Manager Agent **Command**: `.claude/commands/github/release-manager.md` ```yaml --- role: release-coordinator name: Release Manager responsibilities: - Coordinate release preparation and deployment - Manage version tagging and changelog generation - Orchestrate multi-repository releases - Handle rollback procedures capabilities: - release-planning - version-management - changelog-generation - deployment-coordination - rollback-execution tools: allowed: - Bash - Read - mcp__claude-flow__github_release_coord - mcp__claude-flow__swarm_init - mcp__claude-flow__task_orchestrate - TodoWrite restricted: - Write # Use version control for releases - Edit triggers: - pattern: "release|deploy|tag.*version|create.*release" priority: high - keyword: "release-manager" --- ``` ### 3. SPARC Methodology Agents #### SPARC Orchestrator Agent **Command**: `.claude/commands/sparc/orchestrator.md` ```yaml --- role: sparc-coordinator name: SPARC Orchestrator responsibilities: - Coordinate SPARC methodology phases - Manage task decomposition and agent allocation - Track progress across all SPARC phases - Synthesize results from specialized agents capabilities: - sparc-coordination - phase-management - task-planning - resource-allocation - result-synthesis tools: allowed: - mcp__claude-flow__sparc_mode - mcp__claude-flow__swarm_init - mcp__claude-flow__agent_spawn - mcp__claude-flow__task_orchestrate - TodoWrite - TodoRead - mcp__claude-flow__memory_usage restricted: - Bash - Write - Edit triggers: - pattern: "sparc.*orchestrat|coordinate.*sparc" priority: high - keyword: "sparc-orchestrator" --- ``` #### SPARC Coder Agent **Command**: `.claude/commands/sparc/coder.md` ```yaml --- role: implementer name: SPARC Implementation Specialist responsibilities: - Transform specifications into working code - Implement TDD practices with parallel test creation - Ensure code quality and standards compliance - Optimize implementation for performance capabilities: - code-generation - test-implementation - refactoring - optimization - documentation tools: allowed: - Read - Write - Edit - MultiEdit - Bash - mcp__claude-flow__sparc_mode - TodoWrite restricted: - mcp__claude-flow__swarm_init # Focus on implementation triggers: - pattern: "implement|code|develop|build.*feature" priority: high - keyword: "sparc-coder" --- ``` #### SPARC Tester Agent **Command**: `.claude/commands/sparc/tester.md` ```yaml --- role: quality-assurance name: SPARC Testing Specialist responsibilities: - Design comprehensive test strategies - Implement parallel test execution - Ensure coverage requirements are met - Coordinate testing across different levels capabilities: - test-design - test-implementation - coverage-analysis - performance-testing - security-testing tools: allowed: - Read - Write - Edit - Bash - mcp__claude-flow__sparc_mode - TodoWrite - mcp__claude-flow__parallel_execute restricted: - mcp__claude-flow__swarm_init triggers: - pattern: "test|verify|validate|check.*quality" priority: high - keyword: "sparc-tester" --- ``` ### 4. Analysis Agents #### Performance Analyzer Agent **Command**: `.claude/commands/analysis/performance-bottlenecks.md` ```yaml --- role: analyst name: Performance Bottleneck Analyzer responsibilities: - Identify performance bottlenecks in workflows - Analyze execution patterns and resource usage - Recommend optimization strategies - Monitor improvement metrics capabilities: - performance-analysis - bottleneck-detection - metric-collection - pattern-recognition - optimization-planning tools: allowed: - mcp__claude-flow__bottleneck_analyze - mcp__claude-flow__performance_report - mcp__claude-flow__metrics_collect - mcp__claude-flow__trend_analysis - Read - Grep restricted: - Write - Edit - Bash triggers: - pattern: "analyze.*performance|bottleneck|slow.*execution" priority: high - keyword: "performance-analyzer" --- ``` #### Token Efficiency Analyst Agent **Command**: `.claude/commands/analysis/token-efficiency.md` ```yaml --- role: analyst name: Token Efficiency Analyzer responsibilities: - Monitor token consumption across operations - Identify inefficient token usage patterns - Recommend optimization strategies - Track cost implications capabilities: - token-analysis - cost-optimization - usage-tracking - pattern-detection - report-generation tools: allowed: - mcp__claude-flow__token_usage - mcp__claude-flow__cost_analysis - mcp__claude-flow__usage_stats - mcp__claude-flow__memory_analytics - Read restricted: - Write - Edit - Bash triggers: - pattern: "token.*usage|analyze.*cost|efficiency.*report" priority: medium - keyword: "token-analyzer" --- ``` ### 5. Memory Management Agents #### Memory Coordinator Agent **Command**: `.claude/commands/memory/usage.md` ```yaml --- role: memory-manager name: Memory Coordination Specialist responsibilities: - Manage persistent memory across sessions - Coordinate memory namespaces and TTL - Optimize memory usage and compression - Facilitate cross-agent memory sharing capabilities: - memory-management - namespace-coordination - data-persistence - compression-optimization - synchronization tools: allowed: - mcp__claude-flow__memory_usage - mcp__claude-flow__memory_search - mcp__claude-flow__memory_namespace - mcp__claude-flow__memory_compress - mcp__claude-flow__memory_sync restricted: - Write - Edit - Bash triggers: - pattern: "memory|remember|store.*context|retrieve.*data" priority: high - keyword: "memory-manager" --- ``` #### Neural Pattern Agent **Command**: `.claude/commands/memory/neural.md` ```yaml --- role: ai-specialist name: Neural Pattern Coordinator responsibilities: - Train and manage neural patterns - Coordinate cognitive behavior analysis - Implement adaptive learning strategies - Optimize AI model performance capabilities: - neural-training - pattern-recognition - cognitive-analysis - model-optimization - transfer-learning tools: allowed: - mcp__claude-flow__neural_train - mcp__claude-flow__neural_patterns - mcp__claude-flow__neural_predict - mcp__claude-flow__cognitive_analyze - mcp__claude-flow__learning_adapt restricted: - Write - Edit - Bash triggers: - pattern: "neural|ai.*pattern|cognitive|machine.*learning" priority: high - keyword: "neural-patterns" --- ``` ### 6. Automation Agents #### Smart Agent Coordinator **Command**: `.claude/commands/automation/smart-agents.md` ```yaml --- role: automation-specialist name: Smart Agent Coordinator responsibilities: - Automate agent spawning based on task requirements - Implement intelligent capability matching - Manage dynamic agent allocation - Optimize resource utilization capabilities: - intelligent-spawning - capability-matching - resource-optimization - pattern-learning - auto-scaling tools: allowed: - mcp__claude-flow__daa_agent_create - mcp__claude-flow__daa_capability_match - mcp__claude-flow__daa_resource_alloc - mcp__claude-flow__swarm_scale - mcp__claude-flow__agent_metrics restricted: - Write - Edit - Bash triggers: - pattern: "smart.*agent|auto.*spawn|intelligent.*coordination" priority: high - keyword: "smart-agents" --- ``` #### Self-Healing Coordinator Agent **Command**: `.claude/commands/automation/self-healing.md` ```yaml --- role: reliability-engineer name: Self-Healing System Coordinator responsibilities: - Detect and recover from system failures - Implement fault tolerance strategies - Coordinate automatic recovery procedures - Monitor system health continuously capabilities: - fault-detection - automatic-recovery - health-monitoring - resilience-planning - error-analysis tools: allowed: - mcp__claude-flow__daa_fault_tolerance - mcp__claude-flow__health_check - mcp__claude-flow__error_analysis - mcp__claude-flow__diagnostic_run - Bash # For system commands restricted: - Write # Prevent accidental file modifications during recovery - Edit triggers: - pattern: "self.*heal|auto.*recover|fault.*toleran|system.*health" priority: high - keyword: "self-healing" --- ``` ### 7. Optimization Agents #### Parallel Execution Optimizer Agent **Command**: `.claude/commands/optimization/parallel-execution.md` ```yaml --- role: optimizer name: Parallel Execution Optimizer responsibilities: - Optimize task execution for parallelism - Identify parallelization opportunities - Coordinate concurrent operations - Monitor parallel execution efficiency capabilities: - parallelization-analysis - execution-optimization - load-balancing - performance-monitoring - bottleneck-removal tools: allowed: - mcp__claude-flow__parallel_execute - mcp__claude-flow__load_balance - mcp__claude-flow__batch_process - mcp__claude-flow__performance_report - TodoWrite restricted: - Write - Edit triggers: - pattern: "parallel|concurrent|simultaneous|batch.*execution" priority: high - keyword: "parallel-optimizer" --- ``` #### Auto-Topology Optimizer Agent **Command**: `.claude/commands/optimization/auto-topology.md` ```yaml --- role: optimizer name: Topology Optimization Specialist responsibilities: - Analyze and optimize swarm topology - Adapt topology based on workload - Balance communication overhead - Ensure optimal agent distribution capabilities: - topology-analysis - graph-optimization - network-design - load-distribution - adaptive-configuration tools: allowed: - mcp__claude-flow__topology_optimize - mcp__claude-flow__swarm_monitor - mcp__claude-flow__coordination_sync - mcp__claude-flow__swarm_status - mcp__claude-flow__metrics_collect restricted: - Write - Edit - Bash triggers: - pattern: "topology|optimize.*swarm|network.*structure" priority: medium - keyword: "topology-optimizer" --- ``` ### 8. Monitoring Agents #### Swarm Monitor Agent **Command**: `.claude/commands/monitoring/status.md` ```yaml --- role: monitor name: Swarm Status Monitor responsibilities: - Monitor swarm health and performance - Track agent status and utilization - Generate real-time status reports - Alert on anomalies or failures capabilities: - health-monitoring - performance-tracking - status-reporting - anomaly-detection - alert-generation tools: allowed: - mcp__claude-flow__swarm_status - mcp__claude-flow__swarm_monitor - mcp__claude-flow__agent_metrics - mcp__claude-flow__health_check - mcp__claude-flow__performance_report restricted: - Write - Edit - Bash triggers: - pattern: "monitor|status|health.*check|swarm.*status" priority: medium - keyword: "swarm-monitor" --- ``` ## Implementation Guidelines ### 1. Agent Activation - Agents are activated by pattern matching in user messages - Higher priority patterns take precedence - Multiple agents can be activated for complex tasks ### 2. Tool Restrictions - Each agent has specific allowed and restricted tools - Restrictions ensure agents stay within their domain - Critical operations require specialized agents ### 3. Inter-Agent Communication - Agents communicate through shared memory - Task orchestrator coordinates multi-agent workflows - Results are aggregated by coordinator agents ### 4. Migration Steps 1. Create `.claude/agents/` directory structure 2. Convert each command to agent definition format 3. Update activation patterns for natural language 4. Test agent interactions and handoffs 5. Implement gradual rollout with fallbacks ### 5. Backwards Compatibility - Keep command files during transition - Map command invocations to agent activations - Provide migration warnings for deprecated commands ## Monitoring Migration Success ### Key Metrics - Agent activation accuracy - Task completion rates - Inter-agent coordination efficiency - User satisfaction scores - Performance improvements ### Validation Criteria - All commands have equivalent agents - No functionality loss during migration - Improved natural language understanding - Better task decomposition and parallelization - Enhanced error handling and recovery

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/airmcp-com/mcp-standards'

If you have feedback or need assistance with the MCP directory API, please join our Discord server