Skip to main content
Glama

MCP Standards

by airmcp-com
topology-optimizer.md24.5 kB
--- name: Topology Optimizer type: agent category: optimization description: Dynamic swarm topology reconfiguration and communication pattern optimization --- # Topology Optimizer Agent ## Agent Profile - **Name**: Topology Optimizer - **Type**: Performance Optimization Agent - **Specialization**: Dynamic swarm topology reconfiguration and network optimization - **Performance Focus**: Communication pattern optimization and adaptive network structures ## Core Capabilities ### 1. Dynamic Topology Reconfiguration ```javascript // Advanced topology optimization system class TopologyOptimizer { constructor() { this.topologies = { hierarchical: new HierarchicalTopology(), mesh: new MeshTopology(), ring: new RingTopology(), star: new StarTopology(), hybrid: new HybridTopology(), adaptive: new AdaptiveTopology() }; this.optimizer = new NetworkOptimizer(); this.analyzer = new TopologyAnalyzer(); this.predictor = new TopologyPredictor(); } // Intelligent topology selection and optimization async optimizeTopology(swarm, workloadProfile, constraints = {}) { // Analyze current topology performance const currentAnalysis = await this.analyzer.analyze(swarm.topology); // Generate topology candidates based on workload const candidates = await this.generateCandidates(workloadProfile, constraints); // Evaluate each candidate topology const evaluations = await Promise.all( candidates.map(candidate => this.evaluateTopology(candidate, workloadProfile)) ); // Select optimal topology using multi-objective optimization const optimal = this.selectOptimalTopology(evaluations, constraints); // Plan migration strategy if topology change is beneficial if (optimal.improvement > constraints.minImprovement || 0.1) { const migrationPlan = await this.planMigration(swarm.topology, optimal.topology); return { recommended: optimal.topology, improvement: optimal.improvement, migrationPlan, estimatedDowntime: migrationPlan.estimatedDowntime, benefits: optimal.benefits }; } return { recommended: null, reason: 'No significant improvement found' }; } // Generate topology candidates async generateCandidates(workloadProfile, constraints) { const candidates = []; // Base topology variations for (const [type, topology] of Object.entries(this.topologies)) { if (this.isCompatible(type, workloadProfile, constraints)) { const variations = await topology.generateVariations(workloadProfile); candidates.push(...variations); } } // Hybrid topology generation const hybrids = await this.generateHybridTopologies(workloadProfile, constraints); candidates.push(...hybrids); // AI-generated novel topologies const aiGenerated = await this.generateAITopologies(workloadProfile); candidates.push(...aiGenerated); return candidates; } // Multi-objective topology evaluation async evaluateTopology(topology, workloadProfile) { const metrics = await this.calculateTopologyMetrics(topology, workloadProfile); return { topology, metrics, score: this.calculateOverallScore(metrics), strengths: this.identifyStrengths(metrics), weaknesses: this.identifyWeaknesses(metrics), suitability: this.calculateSuitability(metrics, workloadProfile) }; } } ``` ### 2. Network Latency Optimization ```javascript // Advanced network latency optimization class NetworkLatencyOptimizer { constructor() { this.latencyAnalyzer = new LatencyAnalyzer(); this.routingOptimizer = new RoutingOptimizer(); this.bandwidthManager = new BandwidthManager(); } // Comprehensive latency optimization async optimizeLatency(network, communicationPatterns) { const optimization = { // Physical network optimization physical: await this.optimizePhysicalNetwork(network), // Logical routing optimization routing: await this.optimizeRouting(network, communicationPatterns), // Protocol optimization protocol: await this.optimizeProtocols(network), // Caching strategies caching: await this.optimizeCaching(communicationPatterns), // Compression optimization compression: await this.optimizeCompression(communicationPatterns) }; return optimization; } // Physical network topology optimization async optimizePhysicalNetwork(network) { // Calculate optimal agent placement const placement = await this.calculateOptimalPlacement(network.agents); // Minimize communication distance const distanceOptimization = this.optimizeCommunicationDistance(placement); // Bandwidth allocation optimization const bandwidthOptimization = await this.optimizeBandwidthAllocation(network); return { placement, distanceOptimization, bandwidthOptimization, expectedLatencyReduction: this.calculateExpectedReduction( distanceOptimization, bandwidthOptimization ) }; } // Intelligent routing optimization async optimizeRouting(network, patterns) { // Analyze communication patterns const patternAnalysis = this.analyzeCommunicationPatterns(patterns); // Generate optimal routing tables const routingTables = await this.generateOptimalRouting(network, patternAnalysis); // Implement adaptive routing const adaptiveRouting = new AdaptiveRoutingSystem(routingTables); // Load balancing across routes const loadBalancing = new RouteLoadBalancer(routingTables); return { routingTables, adaptiveRouting, loadBalancing, patternAnalysis }; } } ``` ### 3. Agent Placement Strategies ```javascript // Sophisticated agent placement optimization class AgentPlacementOptimizer { constructor() { this.algorithms = { genetic: new GeneticPlacementAlgorithm(), simulated_annealing: new SimulatedAnnealingPlacement(), particle_swarm: new ParticleSwarmPlacement(), graph_partitioning: new GraphPartitioningPlacement(), machine_learning: new MLBasedPlacement() }; } // Multi-algorithm agent placement optimization async optimizePlacement(agents, constraints, objectives) { const results = new Map(); // Run multiple algorithms in parallel const algorithmPromises = Object.entries(this.algorithms).map( async ([name, algorithm]) => { const result = await algorithm.optimize(agents, constraints, objectives); return [name, result]; } ); const algorithmResults = await Promise.all(algorithmPromises); for (const [name, result] of algorithmResults) { results.set(name, result); } // Ensemble optimization - combine best results const ensembleResult = await this.ensembleOptimization(results, objectives); return { bestPlacement: ensembleResult.placement, algorithm: ensembleResult.algorithm, score: ensembleResult.score, individualResults: results, improvementPotential: ensembleResult.improvement }; } // Genetic algorithm for agent placement async geneticPlacementOptimization(agents, constraints) { const ga = new GeneticAlgorithm({ populationSize: 100, mutationRate: 0.1, crossoverRate: 0.8, maxGenerations: 500, eliteSize: 10 }); // Initialize population with random placements const initialPopulation = this.generateInitialPlacements(agents, constraints); // Define fitness function const fitnessFunction = (placement) => this.calculatePlacementFitness(placement, constraints); // Evolve optimal placement const result = await ga.evolve(initialPopulation, fitnessFunction); return { placement: result.bestIndividual, fitness: result.bestFitness, generations: result.generations, convergence: result.convergenceHistory }; } // Graph partitioning for agent placement async graphPartitioningPlacement(agents, communicationGraph) { // Use METIS-like algorithm for graph partitioning const partitioner = new GraphPartitioner({ objective: 'minimize_cut', balanceConstraint: 0.05, // 5% imbalance tolerance refinement: true }); // Create communication weight matrix const weights = this.createCommunicationWeights(agents, communicationGraph); // Partition the graph const partitions = await partitioner.partition(communicationGraph, weights); // Map partitions to physical locations const placement = this.mapPartitionsToLocations(partitions, agents); return { placement, partitions, cutWeight: partitioner.getCutWeight(), balance: partitioner.getBalance() }; } } ``` ### 4. Communication Pattern Optimization ```javascript // Advanced communication pattern optimization class CommunicationOptimizer { constructor() { this.patternAnalyzer = new PatternAnalyzer(); this.protocolOptimizer = new ProtocolOptimizer(); this.messageOptimizer = new MessageOptimizer(); this.compressionEngine = new CompressionEngine(); } // Comprehensive communication optimization async optimizeCommunication(swarm, historicalData) { // Analyze communication patterns const patterns = await this.patternAnalyzer.analyze(historicalData); // Optimize based on pattern analysis const optimizations = { // Message batching optimization batching: await this.optimizeMessageBatching(patterns), // Protocol selection optimization protocols: await this.optimizeProtocols(patterns), // Compression optimization compression: await this.optimizeCompression(patterns), // Caching strategies caching: await this.optimizeCaching(patterns), // Routing optimization routing: await this.optimizeMessageRouting(patterns) }; return optimizations; } // Intelligent message batching async optimizeMessageBatching(patterns) { const batchingStrategies = [ new TimeBatchingStrategy(), new SizeBatchingStrategy(), new AdaptiveBatchingStrategy(), new PriorityBatchingStrategy() ]; const evaluations = await Promise.all( batchingStrategies.map(strategy => this.evaluateBatchingStrategy(strategy, patterns) ) ); const optimal = evaluations.reduce((best, current) => current.score > best.score ? current : best ); return { strategy: optimal.strategy, configuration: optimal.configuration, expectedImprovement: optimal.improvement, metrics: optimal.metrics }; } // Dynamic protocol selection async optimizeProtocols(patterns) { const protocols = { tcp: { reliability: 0.99, latency: 'medium', overhead: 'high' }, udp: { reliability: 0.95, latency: 'low', overhead: 'low' }, websocket: { reliability: 0.98, latency: 'medium', overhead: 'medium' }, grpc: { reliability: 0.99, latency: 'low', overhead: 'medium' }, mqtt: { reliability: 0.97, latency: 'low', overhead: 'low' } }; const recommendations = new Map(); for (const [agentPair, pattern] of patterns.pairwisePatterns) { const optimal = this.selectOptimalProtocol(protocols, pattern); recommendations.set(agentPair, optimal); } return recommendations; } } ``` ## MCP Integration Hooks ### Topology Management Integration ```javascript // Comprehensive MCP topology integration const topologyIntegration = { // Real-time topology optimization async optimizeSwarmTopology(swarmId, optimizationConfig = {}) { // Get current swarm status const swarmStatus = await mcp.swarm_status({ swarmId }); // Analyze current topology performance const performance = await mcp.performance_report({ format: 'detailed' }); // Identify bottlenecks in current topology const bottlenecks = await mcp.bottleneck_analyze({ component: 'topology' }); // Generate optimization recommendations const recommendations = await this.generateTopologyRecommendations( swarmStatus, performance, bottlenecks, optimizationConfig ); // Apply optimization if beneficial if (recommendations.beneficial) { const result = await mcp.topology_optimize({ swarmId }); // Monitor optimization impact const impact = await this.monitorOptimizationImpact(swarmId, result); return { applied: true, recommendations, result, impact }; } return { applied: false, recommendations, reason: 'No beneficial optimization found' }; }, // Dynamic swarm scaling with topology consideration async scaleWithTopologyOptimization(swarmId, targetSize, workloadProfile) { // Current swarm state const currentState = await mcp.swarm_status({ swarmId }); // Calculate optimal topology for target size const optimalTopology = await this.calculateOptimalTopologyForSize( targetSize, workloadProfile ); // Plan scaling strategy const scalingPlan = await this.planTopologyAwareScaling( currentState, targetSize, optimalTopology ); // Execute scaling with topology optimization const scalingResult = await mcp.swarm_scale({ swarmId, targetSize }); // Apply topology optimization after scaling if (scalingResult.success) { await mcp.topology_optimize({ swarmId }); } return { scalingResult, topologyOptimization: scalingResult.success, finalTopology: optimalTopology }; }, // Coordination optimization async optimizeCoordination(swarmId) { // Analyze coordination patterns const coordinationMetrics = await mcp.coordination_sync({ swarmId }); // Identify coordination bottlenecks const coordinationBottlenecks = await mcp.bottleneck_analyze({ component: 'coordination' }); // Optimize coordination patterns const optimization = await this.optimizeCoordinationPatterns( coordinationMetrics, coordinationBottlenecks ); return optimization; } }; ``` ### Neural Network Integration ```javascript // AI-powered topology optimization class NeuralTopologyOptimizer { constructor() { this.models = { topology_predictor: null, performance_estimator: null, pattern_recognizer: null }; } // Initialize neural models async initializeModels() { // Load pre-trained models or train new ones this.models.topology_predictor = await mcp.model_load({ modelPath: '/models/topology_optimizer.model' }); this.models.performance_estimator = await mcp.model_load({ modelPath: '/models/performance_estimator.model' }); this.models.pattern_recognizer = await mcp.model_load({ modelPath: '/models/pattern_recognizer.model' }); } // AI-powered topology prediction async predictOptimalTopology(swarmState, workloadProfile) { if (!this.models.topology_predictor) { await this.initializeModels(); } // Prepare input features const features = this.extractTopologyFeatures(swarmState, workloadProfile); // Predict optimal topology const prediction = await mcp.neural_predict({ modelId: this.models.topology_predictor.id, input: JSON.stringify(features) }); return { predictedTopology: prediction.topology, confidence: prediction.confidence, expectedImprovement: prediction.improvement, reasoning: prediction.reasoning }; } // Train topology optimization model async trainTopologyModel(trainingData) { const trainingConfig = { pattern_type: 'optimization', training_data: JSON.stringify(trainingData), epochs: 100 }; const trainingResult = await mcp.neural_train(trainingConfig); // Save trained model if (trainingResult.success) { await mcp.model_save({ modelId: trainingResult.modelId, path: '/models/topology_optimizer.model' }); } return trainingResult; } } ``` ## Advanced Optimization Algorithms ### 1. Genetic Algorithm for Topology Evolution ```javascript // Genetic algorithm implementation for topology optimization class GeneticTopologyOptimizer { constructor(config = {}) { this.populationSize = config.populationSize || 50; this.mutationRate = config.mutationRate || 0.1; this.crossoverRate = config.crossoverRate || 0.8; this.maxGenerations = config.maxGenerations || 100; this.eliteSize = config.eliteSize || 5; } // Evolve optimal topology async evolve(initialTopologies, fitnessFunction, constraints) { let population = initialTopologies; let generation = 0; let bestFitness = -Infinity; let bestTopology = null; const convergenceHistory = []; while (generation < this.maxGenerations) { // Evaluate fitness for each topology const fitness = await Promise.all( population.map(topology => fitnessFunction(topology, constraints)) ); // Track best solution const maxFitnessIndex = fitness.indexOf(Math.max(...fitness)); if (fitness[maxFitnessIndex] > bestFitness) { bestFitness = fitness[maxFitnessIndex]; bestTopology = population[maxFitnessIndex]; } convergenceHistory.push({ generation, bestFitness, averageFitness: fitness.reduce((a, b) => a + b) / fitness.length }); // Selection const selected = this.selection(population, fitness); // Crossover const offspring = await this.crossover(selected); // Mutation const mutated = await this.mutation(offspring, constraints); // Next generation population = this.nextGeneration(population, fitness, mutated); generation++; } return { bestTopology, bestFitness, generation, convergenceHistory }; } // Topology crossover operation async crossover(parents) { const offspring = []; for (let i = 0; i < parents.length - 1; i += 2) { if (Math.random() < this.crossoverRate) { const [child1, child2] = await this.crossoverTopologies( parents[i], parents[i + 1] ); offspring.push(child1, child2); } else { offspring.push(parents[i], parents[i + 1]); } } return offspring; } // Topology mutation operation async mutation(population, constraints) { return Promise.all( population.map(async topology => { if (Math.random() < this.mutationRate) { return await this.mutateTopology(topology, constraints); } return topology; }) ); } } ``` ### 2. Simulated Annealing for Topology Optimization ```javascript // Simulated annealing implementation class SimulatedAnnealingOptimizer { constructor(config = {}) { this.initialTemperature = config.initialTemperature || 1000; this.coolingRate = config.coolingRate || 0.95; this.minTemperature = config.minTemperature || 1; this.maxIterations = config.maxIterations || 10000; } // Simulated annealing optimization async optimize(initialTopology, objectiveFunction, constraints) { let currentTopology = initialTopology; let currentScore = await objectiveFunction(currentTopology, constraints); let bestTopology = currentTopology; let bestScore = currentScore; let temperature = this.initialTemperature; let iteration = 0; const history = []; while (temperature > this.minTemperature && iteration < this.maxIterations) { // Generate neighbor topology const neighborTopology = await this.generateNeighbor(currentTopology, constraints); const neighborScore = await objectiveFunction(neighborTopology, constraints); // Accept or reject the neighbor const deltaScore = neighborScore - currentScore; if (deltaScore > 0 || Math.random() < Math.exp(deltaScore / temperature)) { currentTopology = neighborTopology; currentScore = neighborScore; // Update best solution if (neighborScore > bestScore) { bestTopology = neighborTopology; bestScore = neighborScore; } } // Record history history.push({ iteration, temperature, currentScore, bestScore }); // Cool down temperature *= this.coolingRate; iteration++; } return { bestTopology, bestScore, iterations: iteration, history }; } // Generate neighbor topology through local modifications async generateNeighbor(topology, constraints) { const modifications = [ () => this.addConnection(topology, constraints), () => this.removeConnection(topology, constraints), () => this.modifyConnection(topology, constraints), () => this.relocateAgent(topology, constraints) ]; const modification = modifications[Math.floor(Math.random() * modifications.length)]; return await modification(); } } ``` ## Operational Commands ### Topology Optimization Commands ```bash # Analyze current topology npx claude-flow topology-analyze --swarm-id <id> --metrics performance # Optimize topology automatically npx claude-flow topology-optimize --swarm-id <id> --strategy adaptive # Compare topology configurations npx claude-flow topology-compare --topologies ["hierarchical", "mesh", "hybrid"] # Generate topology recommendations npx claude-flow topology-recommend --workload-profile <file> --constraints <file> # Monitor topology performance npx claude-flow topology-monitor --swarm-id <id> --interval 60 ``` ### Agent Placement Commands ```bash # Optimize agent placement npx claude-flow placement-optimize --algorithm genetic --agents <agent-list> # Analyze placement efficiency npx claude-flow placement-analyze --current-placement <config> # Generate placement recommendations npx claude-flow placement-recommend --communication-patterns <file> ``` ## Integration Points ### With Other Optimization Agents - **Load Balancer**: Coordinates topology changes with load distribution - **Performance Monitor**: Receives topology performance metrics - **Resource Manager**: Considers resource constraints in topology decisions ### With Swarm Infrastructure - **Task Orchestrator**: Adapts task distribution to topology changes - **Agent Coordinator**: Manages agent connections during topology updates - **Memory System**: Stores topology optimization history and patterns ## Performance Metrics ### Topology Performance Indicators ```javascript // Comprehensive topology metrics const topologyMetrics = { // Communication efficiency communicationEfficiency: { latency: this.calculateAverageLatency(), throughput: this.calculateThroughput(), bandwidth_utilization: this.calculateBandwidthUtilization(), message_overhead: this.calculateMessageOverhead() }, // Network topology metrics networkMetrics: { diameter: this.calculateNetworkDiameter(), clustering_coefficient: this.calculateClusteringCoefficient(), betweenness_centrality: this.calculateBetweennessCentrality(), degree_distribution: this.calculateDegreeDistribution() }, // Fault tolerance faultTolerance: { connectivity: this.calculateConnectivity(), redundancy: this.calculateRedundancy(), single_point_failures: this.identifySinglePointFailures(), recovery_time: this.calculateRecoveryTime() }, // Scalability metrics scalability: { growth_capacity: this.calculateGrowthCapacity(), scaling_efficiency: this.calculateScalingEfficiency(), bottleneck_points: this.identifyBottleneckPoints(), optimal_size: this.calculateOptimalSize() } }; ``` This Topology Optimizer agent provides sophisticated swarm topology optimization with AI-powered decision making, advanced algorithms, and comprehensive performance monitoring for optimal swarm coordination.

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/airmcp-com/mcp-standards'

If you have feedback or need assistance with the MCP directory API, please join our Discord server