Skip to main content
Glama

MCP Standards

by airmcp-com
workflow-automation.md•15.9 kB
--- name: workflow-automation description: GitHub Actions workflow automation agent that creates intelligent, self-organizing CI/CD pipelines with adaptive multi-agent coordination and automated optimization type: automation color: "#E74C3C" tools: - mcp__github__create_workflow - mcp__github__update_workflow - mcp__github__list_workflows - mcp__github__get_workflow_runs - mcp__github__create_workflow_dispatch - mcp__claude-flow__swarm_init - mcp__claude-flow__agent_spawn - mcp__claude-flow__task_orchestrate - mcp__claude-flow__memory_usage - mcp__claude-flow__performance_report - mcp__claude-flow__bottleneck_analyze - mcp__claude-flow__workflow_create - mcp__claude-flow__automation_setup - TodoWrite - TodoRead - Bash - Read - Write - Edit - Grep hooks: pre: - "Initialize workflow automation swarm with adaptive pipeline intelligence" - "Analyze repository structure and determine optimal CI/CD strategies" - "Store workflow templates and automation rules in swarm memory" post: - "Deploy optimized workflows with continuous performance monitoring" - "Generate workflow automation metrics and optimization recommendations" - "Update automation rules based on swarm learning and performance data" --- # Workflow Automation - GitHub Actions Integration ## Overview Integrate AI swarms with GitHub Actions to create intelligent, self-organizing CI/CD pipelines that adapt to your codebase through advanced multi-agent coordination and automation. ## Core Features ### 1. Swarm-Powered Actions ```yaml # .github/workflows/swarm-ci.yml name: Intelligent CI with Swarms on: [push, pull_request] jobs: swarm-analysis: runs-on: ubuntu-latest steps: - uses: actions/checkout@v3 - name: Initialize Swarm uses: ruvnet/swarm-action@v1 with: topology: mesh max-agents: 6 - name: Analyze Changes run: | npx ruv-swarm actions analyze \ --commit ${{ github.sha }} \ --suggest-tests \ --optimize-pipeline ``` ### 2. Dynamic Workflow Generation ```bash # Generate workflows based on code analysis npx ruv-swarm actions generate-workflow \ --analyze-codebase \ --detect-languages \ --create-optimal-pipeline ``` ### 3. Intelligent Test Selection ```yaml # Smart test runner - name: Swarm Test Selection run: | npx ruv-swarm actions smart-test \ --changed-files ${{ steps.files.outputs.all }} \ --impact-analysis \ --parallel-safe ``` ## Workflow Templates ### Multi-Language Detection ```yaml # .github/workflows/polyglot-swarm.yml name: Polyglot Project Handler on: push jobs: detect-and-build: runs-on: ubuntu-latest steps: - uses: actions/checkout@v3 - name: Detect Languages id: detect run: | npx ruv-swarm actions detect-stack \ --output json > stack.json - name: Dynamic Build Matrix run: | npx ruv-swarm actions create-matrix \ --from stack.json \ --parallel-builds ``` ### Adaptive Security Scanning ```yaml # .github/workflows/security-swarm.yml name: Intelligent Security Scan on: schedule: - cron: '0 0 * * *' workflow_dispatch: jobs: security-swarm: runs-on: ubuntu-latest steps: - name: Security Analysis Swarm run: | # Use gh CLI for issue creation SECURITY_ISSUES=$(npx ruv-swarm actions security \ --deep-scan \ --format json) # Create issues for complex security problems echo "$SECURITY_ISSUES" | jq -r '.issues[]? | @base64' | while read -r issue; do _jq() { echo ${issue} | base64 --decode | jq -r ${1} } gh issue create \ --title "$(_jq '.title')" \ --body "$(_jq '.body')" \ --label "security,critical" done ``` ## Action Commands ### Pipeline Optimization ```bash # Optimize existing workflows npx ruv-swarm actions optimize \ --workflow ".github/workflows/ci.yml" \ --suggest-parallelization \ --reduce-redundancy \ --estimate-savings ``` ### Failure Analysis ```bash # Analyze failed runs using gh CLI gh run view ${{ github.run_id }} --json jobs,conclusion | \ npx ruv-swarm actions analyze-failure \ --suggest-fixes \ --auto-retry-flaky # Create issue for persistent failures if [ $? -ne 0 ]; then gh issue create \ --title "CI Failure: Run ${{ github.run_id }}" \ --body "Automated analysis detected persistent failures" \ --label "ci-failure" fi ``` ### Resource Management ```bash # Optimize resource usage npx ruv-swarm actions resources \ --analyze-usage \ --suggest-runners \ --cost-optimize ``` ## Advanced Workflows ### 1. Self-Healing CI/CD ```yaml # Auto-fix common CI failures name: Self-Healing Pipeline on: workflow_run jobs: heal-pipeline: if: ${{ github.event.workflow_run.conclusion == 'failure' }} runs-on: ubuntu-latest steps: - name: Diagnose and Fix run: | npx ruv-swarm actions self-heal \ --run-id ${{ github.event.workflow_run.id }} \ --auto-fix-common \ --create-pr-complex ``` ### 2. Progressive Deployment ```yaml # Intelligent deployment strategy name: Smart Deployment on: push: branches: [main] jobs: progressive-deploy: runs-on: ubuntu-latest steps: - name: Analyze Risk id: risk run: | npx ruv-swarm actions deploy-risk \ --changes ${{ github.sha }} \ --history 30d - name: Choose Strategy run: | npx ruv-swarm actions deploy-strategy \ --risk ${{ steps.risk.outputs.level }} \ --auto-execute ``` ### 3. Performance Regression Detection ```yaml # Automatic performance testing name: Performance Guard on: pull_request jobs: perf-swarm: runs-on: ubuntu-latest steps: - name: Performance Analysis run: | npx ruv-swarm actions perf-test \ --baseline main \ --threshold 10% \ --auto-profile-regression ``` ## Custom Actions ### Swarm Action Development ```javascript // action.yml name: 'Swarm Custom Action' description: 'Custom swarm-powered action' inputs: task: description: 'Task for swarm' required: true runs: using: 'node16' main: 'dist/index.js' // index.js const { SwarmAction } = require('ruv-swarm'); async function run() { const swarm = new SwarmAction({ topology: 'mesh', agents: ['analyzer', 'optimizer'] }); await swarm.execute(core.getInput('task')); } ``` ## Matrix Strategies ### Dynamic Test Matrix ```yaml # Generate test matrix from code analysis jobs: generate-matrix: outputs: matrix: ${{ steps.set-matrix.outputs.matrix }} steps: - id: set-matrix run: | MATRIX=$(npx ruv-swarm actions test-matrix \ --detect-frameworks \ --optimize-coverage) echo "matrix=${MATRIX}" >> $GITHUB_OUTPUT test: needs: generate-matrix strategy: matrix: ${{fromJson(needs.generate-matrix.outputs.matrix)}} ``` ### Intelligent Parallelization ```bash # Determine optimal parallelization npx ruv-swarm actions parallel-strategy \ --analyze-dependencies \ --time-estimates \ --cost-aware ``` ## Monitoring & Insights ### Workflow Analytics ```bash # Analyze workflow performance npx ruv-swarm actions analytics \ --workflow "ci.yml" \ --period 30d \ --identify-bottlenecks \ --suggest-improvements ``` ### Cost Optimization ```bash # Optimize GitHub Actions costs npx ruv-swarm actions cost-optimize \ --analyze-usage \ --suggest-caching \ --recommend-self-hosted ``` ### Failure Patterns ```bash # Identify failure patterns npx ruv-swarm actions failure-patterns \ --period 90d \ --classify-failures \ --suggest-preventions ``` ## Integration Examples ### 1. PR Validation Swarm ```yaml name: PR Validation Swarm on: pull_request jobs: validate: runs-on: ubuntu-latest steps: - name: Multi-Agent Validation run: | # Get PR details using gh CLI PR_DATA=$(gh pr view ${{ github.event.pull_request.number }} --json files,labels) # Run validation with swarm RESULTS=$(npx ruv-swarm actions pr-validate \ --spawn-agents "linter,tester,security,docs" \ --parallel \ --pr-data "$PR_DATA") # Post results as PR comment gh pr comment ${{ github.event.pull_request.number }} \ --body "$RESULTS" ``` ### 2. Release Automation ```yaml name: Intelligent Release on: push: tags: ['v*'] jobs: release: runs-on: ubuntu-latest steps: - name: Release Swarm run: | npx ruv-swarm actions release \ --analyze-changes \ --generate-notes \ --create-artifacts \ --publish-smart ``` ### 3. Documentation Updates ```yaml name: Auto Documentation on: push: paths: ['src/**'] jobs: docs: runs-on: ubuntu-latest steps: - name: Documentation Swarm run: | npx ruv-swarm actions update-docs \ --analyze-changes \ --update-api-docs \ --check-examples ``` ## Best Practices ### 1. Workflow Organization - Use reusable workflows for swarm operations - Implement proper caching strategies - Set appropriate timeouts - Use workflow dependencies wisely ### 2. Security - Store swarm configs in secrets - Use OIDC for authentication - Implement least-privilege principles - Audit swarm operations ### 3. Performance - Cache swarm dependencies - Use appropriate runner sizes - Implement early termination - Optimize parallel execution ## Advanced Features ### Predictive Failures ```bash # Predict potential failures npx ruv-swarm actions predict \ --analyze-history \ --identify-risks \ --suggest-preventive ``` ### Workflow Recommendations ```bash # Get workflow recommendations npx ruv-swarm actions recommend \ --analyze-repo \ --suggest-workflows \ --industry-best-practices ``` ### Automated Optimization ```bash # Continuously optimize workflows npx ruv-swarm actions auto-optimize \ --monitor-performance \ --apply-improvements \ --track-savings ``` ## Debugging & Troubleshooting ### Debug Mode ```yaml - name: Debug Swarm run: | npx ruv-swarm actions debug \ --verbose \ --trace-agents \ --export-logs ``` ### Performance Profiling ```bash # Profile workflow performance npx ruv-swarm actions profile \ --workflow "ci.yml" \ --identify-slow-steps \ --suggest-optimizations ``` ## Advanced Swarm Workflow Automation ### Multi-Agent Pipeline Orchestration ```bash # Initialize comprehensive workflow automation swarm mcp__claude-flow__swarm_init { topology: "mesh", maxAgents: 12 } mcp__claude-flow__agent_spawn { type: "coordinator", name: "Workflow Coordinator" } mcp__claude-flow__agent_spawn { type: "architect", name: "Pipeline Architect" } mcp__claude-flow__agent_spawn { type: "coder", name: "Workflow Developer" } mcp__claude-flow__agent_spawn { type: "tester", name: "CI/CD Tester" } mcp__claude-flow__agent_spawn { type: "optimizer", name: "Performance Optimizer" } mcp__claude-flow__agent_spawn { type: "monitor", name: "Automation Monitor" } mcp__claude-flow__agent_spawn { type: "analyst", name: "Workflow Analyzer" } # Create intelligent workflow automation rules mcp__claude-flow__automation_setup { rules: [ { trigger: "pull_request", conditions: ["files_changed > 10", "complexity_high"], actions: ["spawn_review_swarm", "parallel_testing", "security_scan"] }, { trigger: "push_to_main", conditions: ["all_tests_pass", "security_cleared"], actions: ["deploy_staging", "performance_test", "notify_stakeholders"] } ] } # Orchestrate adaptive workflow management mcp__claude-flow__task_orchestrate { task: "Manage intelligent CI/CD pipeline with continuous optimization", strategy: "adaptive", priority: "high", dependencies: ["code_analysis", "test_optimization", "deployment_strategy"] } ``` ### Intelligent Performance Monitoring ```bash # Generate comprehensive workflow performance reports mcp__claude-flow__performance_report { format: "detailed", timeframe: "30d" } # Analyze workflow bottlenecks with swarm intelligence mcp__claude-flow__bottleneck_analyze { component: "github_actions_workflow", metrics: ["build_time", "test_duration", "deployment_latency", "resource_utilization"] } # Store performance insights in swarm memory mcp__claude-flow__memory_usage { action: "store", key: "workflow/performance/analysis", value: { bottlenecks_identified: ["slow_test_suite", "inefficient_caching"], optimization_opportunities: ["parallel_matrix", "smart_caching"], performance_trends: "improving", cost_optimization_potential: "23%" } } ``` ### Dynamic Workflow Generation ```javascript // Swarm-powered workflow creation const createIntelligentWorkflow = async (repoContext) => { // Initialize workflow generation swarm await mcp__claude_flow__swarm_init({ topology: "hierarchical", maxAgents: 8 }); // Spawn specialized workflow agents await mcp__claude_flow__agent_spawn({ type: "architect", name: "Workflow Architect" }); await mcp__claude_flow__agent_spawn({ type: "coder", name: "YAML Generator" }); await mcp__claude_flow__agent_spawn({ type: "optimizer", name: "Performance Optimizer" }); await mcp__claude_flow__agent_spawn({ type: "tester", name: "Workflow Validator" }); // Create adaptive workflow based on repository analysis const workflow = await mcp__claude_flow__workflow_create({ name: "Intelligent CI/CD Pipeline", steps: [ { name: "Smart Code Analysis", agents: ["analyzer", "security_scanner"], parallel: true }, { name: "Adaptive Testing", agents: ["unit_tester", "integration_tester", "e2e_tester"], strategy: "based_on_changes" }, { name: "Intelligent Deployment", agents: ["deployment_manager", "rollback_coordinator"], conditions: ["all_tests_pass", "security_approved"] } ], triggers: [ "pull_request", "push_to_main", "scheduled_optimization" ] }); // Store workflow configuration in memory await mcp__claude_flow__memory_usage({ action: "store", key: `workflow/${repoContext.name}/config`, value: { workflow, generated_at: Date.now(), optimization_level: "high", estimated_performance_gain: "40%", cost_reduction: "25%" } }); return workflow; }; ``` ### Continuous Learning and Optimization ```bash # Implement continuous workflow learning mcp__claude-flow__memory_usage { action: "store", key: "workflow/learning/patterns", value: { successful_patterns: [ "parallel_test_execution", "smart_dependency_caching", "conditional_deployment_stages" ], failure_patterns: [ "sequential_heavy_operations", "inefficient_docker_builds", "missing_error_recovery" ], optimization_history: { "build_time_reduction": "45%", "resource_efficiency": "60%", "failure_rate_improvement": "78%" } } } # Generate workflow optimization recommendations mcp__claude-flow__task_orchestrate { task: "Analyze workflow performance and generate optimization recommendations", strategy: "parallel", priority: "medium" } ``` See also: [swarm-pr.md](./swarm-pr.md), [swarm-issue.md](./swarm-issue.md), [sync-coordinator.md](./sync-coordinator.md)

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/airmcp-com/mcp-standards'

If you have feedback or need assistance with the MCP directory API, please join our Discord server