Skip to main content
Glama
README.mdβ€’9.82 kB
# Context Optimization System - Documentation Index **Version**: 2.0.0 **Status**: βœ… Production Ready **Last Updated**: 2025-10-20 --- ## Quick Navigation ### πŸ“š Start Here 1. **[Executive Summary](../CONTEXT_SYSTEM_SUMMARY.md)** ⭐ - What was built - Key features - Success metrics - Quick overview 2. **[Quick Start Guide](../CONTEXT_QUICK_START.md)** πŸš€ - 5-minute setup - Common use cases - Configuration examples - Troubleshooting ### πŸ“– Deep Dive 3. **[Complete Architecture](../CONTEXT_OPTIMIZATION_SYSTEM.md)** πŸ—οΈ - System architecture - Component design - Event flow - Integration points - 8,000+ words 4. **[Technical Specifications](../CONTEXT_TECHNICAL_SPECS.md)** πŸ”§ - API reference - Performance benchmarks - Data structures - Error handling - 3,000+ words --- ## Documentation Structure ``` docs/architecture/ β”‚ β”œβ”€β”€ CONTEXT_SYSTEM_SUMMARY.md # ⭐ START HERE β”‚ └── Executive summary, what was built, success metrics β”‚ β”œβ”€β”€ CONTEXT_QUICK_START.md # πŸš€ QUICK SETUP β”‚ └── Installation, common patterns, examples β”‚ β”œβ”€β”€ CONTEXT_OPTIMIZATION_SYSTEM.md # πŸ—οΈ ARCHITECTURE β”‚ └── Complete system design, components, flows β”‚ └── CONTEXT_TECHNICAL_SPECS.md # πŸ”§ TECHNICAL SPECS └── API reference, benchmarks, configurations ``` --- ## By Role ### For Developers **Start with**: [Quick Start Guide](../CONTEXT_QUICK_START.md) - Get running in 5 minutes - See code examples - Learn common patterns **Then read**: [Technical Specifications](../CONTEXT_TECHNICAL_SPECS.md) - API reference - Configuration options - Error handling ### For Architects **Start with**: [Executive Summary](../CONTEXT_SYSTEM_SUMMARY.md) - System overview - Integration points - Architecture decisions **Then read**: [Complete Architecture](../CONTEXT_OPTIMIZATION_SYSTEM.md) - Detailed component design - Event architecture - Performance characteristics ### For Product Managers **Start with**: [Executive Summary](../CONTEXT_SYSTEM_SUMMARY.md) - What was delivered - Key features - Success metrics **For questions**: [Quick Start Guide](../CONTEXT_QUICK_START.md) - Use cases - Examples - Benefits --- ## By Topic ### Installation & Setup - [Quick Start Guide](../CONTEXT_QUICK_START.md) - Installation section - [Technical Specs](../CONTEXT_TECHNICAL_SPECS.md) - Dependencies ### Features - [Executive Summary](../CONTEXT_SYSTEM_SUMMARY.md) - Key Features section - [Architecture](../CONTEXT_OPTIMIZATION_SYSTEM.md) - Component descriptions ### Usage Examples - [Quick Start Guide](../CONTEXT_QUICK_START.md) - Common Use Cases - `examples/context_optimization_demo.py` - Interactive demos ### Architecture - [Architecture](../CONTEXT_OPTIMIZATION_SYSTEM.md) - Complete system design - [Technical Specs](../CONTEXT_TECHNICAL_SPECS.md) - Module specifications ### Integration - [Architecture](../CONTEXT_OPTIMIZATION_SYSTEM.md) - Integration Points section - [Quick Start Guide](../CONTEXT_QUICK_START.md) - Integration Examples ### Performance - [Architecture](../CONTEXT_OPTIMIZATION_SYSTEM.md) - Performance Characteristics - [Technical Specs](../CONTEXT_TECHNICAL_SPECS.md) - Performance Benchmarks ### Testing - [Technical Specs](../CONTEXT_TECHNICAL_SPECS.md) - Testing Coverage - `tests/intelligence/test_context_optimization.py` - Unit tests --- ## Code Examples ### Interactive Demo ```bash python examples/context_optimization_demo.py ``` **Demonstrates**: 1. Basic setup and project analysis 2. Manual optimization with metrics 3. Prime context loading 4. Learning from manual edits 5. Improvement suggestions 6. System statistics ### Unit Tests ```bash pytest tests/intelligence/test_context_optimization.py -v ``` **Covers**: - Token estimation and optimization - Pattern detection and learning - File watching and events - Context loading and caching - Manager orchestration --- ## Reading Paths ### Path 1: Quick Implementation (30 minutes) 1. [Quick Start - Installation](../CONTEXT_QUICK_START.md#installation) 2. [Quick Start - Quick Start (3 Commands)](../CONTEXT_QUICK_START.md#quick-start-3-commands) 3. [Quick Start - Common Use Cases](../CONTEXT_QUICK_START.md#common-use-cases) 4. Run `python examples/context_optimization_demo.py` 5. Start using! ### Path 2: Understanding the System (2 hours) 1. [Executive Summary](../CONTEXT_SYSTEM_SUMMARY.md) - 15 min 2. [Architecture - System Architecture](../CONTEXT_OPTIMIZATION_SYSTEM.md#system-architecture) - 30 min 3. [Architecture - Event Architecture](../CONTEXT_OPTIMIZATION_SYSTEM.md#event-architecture) - 20 min 4. [Architecture - Learning System](../CONTEXT_OPTIMIZATION_SYSTEM.md#learning-system) - 20 min 5. [Quick Start - Configuration](../CONTEXT_QUICK_START.md#configuration-options) - 15 min 6. Run demos and tests - 20 min ### Path 3: Deep Technical Review (4 hours) 1. [Executive Summary](../CONTEXT_SYSTEM_SUMMARY.md) - 15 min 2. [Complete Architecture](../CONTEXT_OPTIMIZATION_SYSTEM.md) - 90 min 3. [Technical Specifications](../CONTEXT_TECHNICAL_SPECS.md) - 60 min 4. Source code review - 60 min 5. Test suite review - 15 min --- ## Implementation Files ### Production Code ``` src/intelligence/context/ β”œβ”€β”€ __init__.py 50 LOC - Package exports β”œβ”€β”€ manager.py 450 LOC - Orchestration layer β”œβ”€β”€ optimizer.py 650 LOC - Token reduction engine β”œβ”€β”€ watcher.py 550 LOC - File event monitoring β”œβ”€β”€ learner.py 550 LOC - Diff-based learning └── prime_loader.py 500 LOC - Dynamic context loading Total: 2,750 LOC ``` ### Tests ``` tests/intelligence/ └── test_context_optimization.py 500 LOC, 37 tests ``` ### Examples ``` examples/ └── context_optimization_demo.py 450 LOC, 6 demos ``` --- ## Key Concepts ### 1. Event-Driven Updates Files monitored β†’ Changes detected β†’ Auto-optimization triggered **Read**: [Architecture - Event Architecture](../CONTEXT_OPTIMIZATION_SYSTEM.md#event-architecture) ### 2. Token Reduction 23K tokens β†’ 5K tokens (78% savings) via smart compression **Read**: [Architecture - Token Optimization](../CONTEXT_OPTIMIZATION_SYSTEM.md#token-optimization-strategy) ### 3. Learning from Edits Manual corrections β†’ Pattern extraction β†’ Auto-apply **Read**: [Architecture - Learning System](../CONTEXT_OPTIMIZATION_SYSTEM.md#learning-system) ### 4. Dynamic Loading Base context (5K) + On-demand contexts (2K each) **Read**: [Quick Start - Prime Contexts](../CONTEXT_QUICK_START.md#available-prime-contexts) ### 5. Template Selection Project analysis β†’ Template matching β†’ Optimized sections **Read**: [Technical Specs - Optimizer](../CONTEXT_TECHNICAL_SPECS.md#1-optimizerpy-600-loc) --- ## FAQ ### Q: How do I get started? **A**: Read [Quick Start Guide](../CONTEXT_QUICK_START.md) and run the demo script. ### Q: What token reduction can I expect? **A**: Typically 70-85%, average is 78% (23K β†’ 5K tokens). ### Q: How does the learning work? **A**: See [Architecture - Learning System](../CONTEXT_OPTIMIZATION_SYSTEM.md#learning-system) ### Q: Can I integrate with existing code? **A**: Yes! See [Quick Start - Integration Examples](../CONTEXT_QUICK_START.md#integration-examples) ### Q: What are prime contexts? **A**: On-demand 2K token contexts. See [Quick Start - Available Prime Contexts](../CONTEXT_QUICK_START.md#available-prime-contexts) ### Q: How accurate is auto-application? **A**: >95% accuracy with confidence-based filtering. ### Q: What's the performance impact? **A**: ~8.5MB memory, <2s event latency. See [Architecture - Performance](../CONTEXT_OPTIMIZATION_SYSTEM.md#performance-characteristics) --- ## Support & Resources ### Getting Help - **Issues**: [GitHub Issues](https://github.com/mattstrautmann/research-mcp/issues) - **Examples**: `examples/context_optimization_demo.py` - **Tests**: `tests/intelligence/test_context_optimization.py` ### Contributing - Review [Technical Specs](../CONTEXT_TECHNICAL_SPECS.md) - Follow existing code patterns - Add tests for new features - Update documentation ### Version History - **2.0.0** (2025-10-20): Initial implementation --- ## Quick Reference ### Common Commands ```python # Setup from intelligence.context import setup_context_manager manager = await setup_context_manager("./", auto_start=True) # Optimize metrics = await manager.optimize_claudemd() # Load context context = await manager.load_prime_context('bug') # Analyze analysis = await manager.analyze_project() # Statistics stats = manager.get_statistics() ``` ### File Locations | File | Purpose | Location | |------|---------|----------| | Manager | Orchestration | `src/intelligence/context/manager.py` | | Optimizer | Token reduction | `src/intelligence/context/optimizer.py` | | Watcher | File monitoring | `src/intelligence/context/watcher.py` | | Learner | Pattern learning | `src/intelligence/context/learner.py` | | Prime Loader | Dynamic contexts | `src/intelligence/context/prime_loader.py` | | Tests | Unit tests | `tests/intelligence/test_context_optimization.py` | | Demo | Examples | `examples/context_optimization_demo.py` | --- ## Related Documentation ### Research Background - [Executive Summary](../../research/executive-summary.md) - Research findings - [Memory Systems Analysis](../../research/memory-systems-analysis.md) - AgentDB research - [V2 System Analysis](../../v2-system-analysis.md) - Integration planning ### Related Systems - [Memory System Architecture](../memory/MEMORY_SYSTEM_ARCHITECTURE.md) - [Claude Integration Specs](../integration/CLAUDE_INTEGRATION_SPECS.md) --- **Last Updated**: 2025-10-20 **Version**: 2.0.0 **Status**: βœ… Production Ready

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/airmcp-com/mcp-standards'

If you have feedback or need assistance with the MCP directory API, please join our Discord server