Skip to main content
Glama
SKILL.mdβ€’14.7 kB
--- name: performance-analysis version: 1.0.0 description: Comprehensive performance analysis, bottleneck detection, and optimization recommendations for Claude Flow swarms category: monitoring tags: [performance, bottleneck, optimization, profiling, metrics, analysis] author: Claude Flow Team --- # Performance Analysis Skill Comprehensive performance analysis suite for identifying bottlenecks, profiling swarm operations, generating detailed reports, and providing actionable optimization recommendations. ## Overview This skill consolidates all performance analysis capabilities: - **Bottleneck Detection**: Identify performance bottlenecks across communication, processing, memory, and network - **Performance Profiling**: Real-time monitoring and historical analysis of swarm operations - **Report Generation**: Create comprehensive performance reports in multiple formats - **Optimization Recommendations**: AI-powered suggestions for improving performance ## Quick Start ### Basic Bottleneck Detection ```bash npx claude-flow bottleneck detect ``` ### Generate Performance Report ```bash npx claude-flow analysis performance-report --format html --include-metrics ``` ### Analyze and Auto-Fix ```bash npx claude-flow bottleneck detect --fix --threshold 15 ``` ## Core Capabilities ### 1. Bottleneck Detection #### Command Syntax ```bash npx claude-flow bottleneck detect [options] ``` #### Options - `--swarm-id, -s <id>` - Analyze specific swarm (default: current) - `--time-range, -t <range>` - Analysis period: 1h, 24h, 7d, all (default: 1h) - `--threshold <percent>` - Bottleneck threshold percentage (default: 20) - `--export, -e <file>` - Export analysis to file - `--fix` - Apply automatic optimizations #### Usage Examples ```bash # Basic detection for current swarm npx claude-flow bottleneck detect # Analyze specific swarm over 24 hours npx claude-flow bottleneck detect --swarm-id swarm-123 -t 24h # Export detailed analysis npx claude-flow bottleneck detect -t 24h -e bottlenecks.json # Auto-fix detected issues npx claude-flow bottleneck detect --fix --threshold 15 # Low threshold for sensitive detection npx claude-flow bottleneck detect --threshold 10 --export critical-issues.json ``` #### Metrics Analyzed **Communication Bottlenecks:** - Message queue delays - Agent response times - Coordination overhead - Memory access patterns - Inter-agent communication latency **Processing Bottlenecks:** - Task completion times - Agent utilization rates - Parallel execution efficiency - Resource contention - CPU/memory usage patterns **Memory Bottlenecks:** - Cache hit rates - Memory access patterns - Storage I/O performance - Neural pattern loading times - Memory allocation efficiency **Network Bottlenecks:** - API call latency - MCP communication delays - External service timeouts - Concurrent request limits - Network throughput issues #### Output Format ``` πŸ” Bottleneck Analysis Report ━━━━━━━━━━━━━━━━━━━━━━━━━━━ πŸ“Š Summary β”œβ”€β”€ Time Range: Last 1 hour β”œβ”€β”€ Agents Analyzed: 6 β”œβ”€β”€ Tasks Processed: 42 └── Critical Issues: 2 🚨 Critical Bottlenecks 1. Agent Communication (35% impact) └── coordinator β†’ coder-1 messages delayed by 2.3s avg 2. Memory Access (28% impact) └── Neural pattern loading taking 1.8s per access ⚠️ Warning Bottlenecks 1. Task Queue (18% impact) └── 5 tasks waiting > 10s for assignment πŸ’‘ Recommendations 1. Switch to hierarchical topology (est. 40% improvement) 2. Enable memory caching (est. 25% improvement) 3. Increase agent concurrency to 8 (est. 20% improvement) βœ… Quick Fixes Available Run with --fix to apply: - Enable smart caching - Optimize message routing - Adjust agent priorities ``` ### 2. Performance Profiling #### Real-time Detection Automatic analysis during task execution: - Execution time vs. complexity - Agent utilization rates - Resource constraints - Operation patterns #### Common Bottleneck Patterns **Time Bottlenecks:** - Tasks taking > 5 minutes - Sequential operations that could parallelize - Redundant file operations - Inefficient algorithm implementations **Coordination Bottlenecks:** - Single agent for complex tasks - Unbalanced agent workloads - Poor topology selection - Excessive synchronization points **Resource Bottlenecks:** - High operation count (> 100) - Memory constraints - I/O limitations - Thread pool saturation #### MCP Integration ```javascript // Check for bottlenecks in Claude Code mcp__claude-flow__bottleneck_detect({ timeRange: "1h", threshold: 20, autoFix: false }) // Get detailed task results with bottleneck analysis mcp__claude-flow__task_results({ taskId: "task-123", format: "detailed" }) ``` **Result Format:** ```json { "bottlenecks": [ { "type": "coordination", "severity": "high", "description": "Single agent used for complex task", "recommendation": "Spawn specialized agents for parallel work", "impact": "35%", "affectedComponents": ["coordinator", "coder-1"] } ], "improvements": [ { "area": "execution_time", "suggestion": "Use parallel task execution", "expectedImprovement": "30-50% time reduction", "implementationSteps": [ "Split task into smaller units", "Spawn 3-4 specialized agents", "Use mesh topology for coordination" ] } ], "metrics": { "avgExecutionTime": "142s", "agentUtilization": "67%", "cacheHitRate": "82%", "parallelizationFactor": 1.2 } } ``` ### 3. Report Generation #### Command Syntax ```bash npx claude-flow analysis performance-report [options] ``` #### Options - `--format <type>` - Report format: json, html, markdown (default: markdown) - `--include-metrics` - Include detailed metrics and charts - `--compare <id>` - Compare with previous swarm - `--time-range <range>` - Analysis period: 1h, 24h, 7d, 30d, all - `--output <file>` - Output file path - `--sections <list>` - Comma-separated sections to include #### Report Sections 1. **Executive Summary** - Overall performance score - Key metrics overview - Critical findings 2. **Swarm Overview** - Topology configuration - Agent distribution - Task statistics 3. **Performance Metrics** - Execution times - Throughput analysis - Resource utilization - Latency breakdown 4. **Bottleneck Analysis** - Identified bottlenecks - Impact assessment - Optimization priorities 5. **Comparative Analysis** (when --compare used) - Performance trends - Improvement metrics - Regression detection 6. **Recommendations** - Prioritized action items - Expected improvements - Implementation guidance #### Usage Examples ```bash # Generate HTML report with all metrics npx claude-flow analysis performance-report --format html --include-metrics # Compare current swarm with previous npx claude-flow analysis performance-report --compare swarm-123 --format markdown # Custom output with specific sections npx claude-flow analysis performance-report \ --sections summary,metrics,recommendations \ --output reports/perf-analysis.html \ --format html # Weekly performance report npx claude-flow analysis performance-report \ --time-range 7d \ --include-metrics \ --format markdown \ --output docs/weekly-performance.md # JSON format for CI/CD integration npx claude-flow analysis performance-report \ --format json \ --output build/performance.json ``` #### Sample Markdown Report ```markdown # Performance Analysis Report ## Executive Summary - **Overall Score**: 87/100 - **Analysis Period**: Last 24 hours - **Swarms Analyzed**: 3 - **Critical Issues**: 1 ## Key Metrics | Metric | Value | Trend | Target | |--------|-------|-------|--------| | Avg Task Time | 42s | ↓ 12% | 35s | | Agent Utilization | 78% | ↑ 5% | 85% | | Cache Hit Rate | 91% | β†’ | 90% | | Parallel Efficiency | 2.3x | ↑ 0.4x | 2.5x | ## Bottleneck Analysis ### Critical 1. **Agent Communication Delay** (Impact: 35%) - Coordinator β†’ Coder messages delayed by 2.3s avg - **Fix**: Switch to hierarchical topology ### Warnings 1. **Memory Access Pattern** (Impact: 18%) - Neural pattern loading: 1.8s per access - **Fix**: Enable memory caching ## Recommendations 1. **High Priority**: Switch to hierarchical topology (40% improvement) 2. **Medium Priority**: Enable memory caching (25% improvement) 3. **Low Priority**: Increase agent concurrency to 8 (20% improvement) ``` ### 4. Optimization Recommendations #### Automatic Fixes When using `--fix`, the following optimizations may be applied: **1. Topology Optimization** - Switch to more efficient topology (mesh β†’ hierarchical) - Adjust communication patterns - Reduce coordination overhead - Optimize message routing **2. Caching Enhancement** - Enable memory caching - Optimize cache strategies - Preload common patterns - Implement cache warming **3. Concurrency Tuning** - Adjust agent counts - Optimize parallel execution - Balance workload distribution - Implement load balancing **4. Priority Adjustment** - Reorder task queues - Prioritize critical paths - Reduce wait times - Implement fair scheduling **5. Resource Optimization** - Optimize memory usage - Reduce I/O operations - Batch API calls - Implement connection pooling #### Performance Impact Typical improvements after bottleneck resolution: - **Communication**: 30-50% faster message delivery - **Processing**: 20-40% reduced task completion time - **Memory**: 40-60% fewer cache misses - **Network**: 25-45% reduced API latency - **Overall**: 25-45% total performance improvement ## Advanced Usage ### Continuous Monitoring ```bash # Monitor performance in real-time npx claude-flow swarm monitor --interval 5 # Generate hourly reports while true; do npx claude-flow analysis performance-report \ --format json \ --output logs/perf-$(date +%Y%m%d-%H%M).json sleep 3600 done ``` ### CI/CD Integration ```yaml # .github/workflows/performance.yml name: Performance Analysis on: [push, pull_request] jobs: analyze: runs-on: ubuntu-latest steps: - uses: actions/checkout@v2 - name: Run Performance Analysis run: | npx claude-flow analysis performance-report \ --format json \ --output performance.json - name: Check Performance Thresholds run: | npx claude-flow bottleneck detect \ --threshold 15 \ --export bottlenecks.json - name: Upload Reports uses: actions/upload-artifact@v2 with: name: performance-reports path: | performance.json bottlenecks.json ``` ### Custom Analysis Scripts ```javascript // scripts/analyze-performance.js const { exec } = require('child_process'); const fs = require('fs'); async function analyzePerformance() { // Run bottleneck detection const bottlenecks = await runCommand( 'npx claude-flow bottleneck detect --format json' ); // Generate performance report const report = await runCommand( 'npx claude-flow analysis performance-report --format json' ); // Analyze results const analysis = { bottlenecks: JSON.parse(bottlenecks), performance: JSON.parse(report), timestamp: new Date().toISOString() }; // Save combined analysis fs.writeFileSync( 'analysis/combined-report.json', JSON.stringify(analysis, null, 2) ); // Generate alerts if needed if (analysis.bottlenecks.critical.length > 0) { console.error('CRITICAL: Performance bottlenecks detected!'); process.exit(1); } } function runCommand(cmd) { return new Promise((resolve, reject) => { exec(cmd, (error, stdout, stderr) => { if (error) reject(error); else resolve(stdout); }); }); } analyzePerformance().catch(console.error); ``` ## Best Practices ### 1. Regular Analysis - Run bottleneck detection after major changes - Generate weekly performance reports - Monitor trends over time - Set up automated alerts ### 2. Threshold Tuning - Start with default threshold (20%) - Lower for production systems (10-15%) - Higher for development (25-30%) - Adjust based on requirements ### 3. Fix Strategy - Always review before applying --fix - Test fixes in development first - Apply fixes incrementally - Monitor impact after changes ### 4. Report Integration - Include in documentation - Share with team regularly - Track improvements over time - Use for capacity planning ### 5. Continuous Optimization - Learn from each analysis - Build performance budgets - Establish baselines - Set improvement goals ## Troubleshooting ### Common Issues **High Memory Usage** ```bash # Analyze memory bottlenecks npx claude-flow bottleneck detect --threshold 10 # Check cache performance npx claude-flow cache manage --action stats # Review memory metrics npx claude-flow memory usage ``` **Slow Task Execution** ```bash # Identify slow tasks npx claude-flow task status --detailed # Analyze coordination overhead npx claude-flow bottleneck detect --time-range 1h # Check agent utilization npx claude-flow agent metrics ``` **Poor Cache Performance** ```bash # Analyze cache hit rates npx claude-flow analysis performance-report --sections metrics # Review cache strategy npx claude-flow cache manage --action analyze # Enable cache warming npx claude-flow bottleneck detect --fix ``` ## Integration with Other Skills - **swarm-orchestration**: Use performance data to optimize topology - **memory-management**: Improve cache strategies based on analysis - **task-coordination**: Adjust scheduling based on bottlenecks - **neural-training**: Train patterns from performance data ## Related Commands - `npx claude-flow swarm monitor` - Real-time monitoring - `npx claude-flow token usage` - Token optimization analysis - `npx claude-flow cache manage` - Cache optimization - `npx claude-flow agent metrics` - Agent performance metrics - `npx claude-flow task status` - Task execution analysis ## See Also - [Bottleneck Detection Guide](/workspaces/claude-code-flow/.claude/commands/analysis/bottleneck-detect.md) - [Performance Report Guide](/workspaces/claude-code-flow/.claude/commands/analysis/performance-report.md) - [Performance Bottlenecks Overview](/workspaces/claude-code-flow/.claude/commands/analysis/performance-bottlenecks.md) - [Swarm Monitoring Documentation](../swarm-orchestration/SKILL.md) - [Memory Management Documentation](../memory-management/SKILL.md) --- **Version**: 1.0.0 **Last Updated**: 2025-10-19 **Maintainer**: Claude Flow Team

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/airmcp-com/mcp-standards'

If you have feedback or need assistance with the MCP directory API, please join our Discord server