Skip to main content
Glama

MCP Standards

by airmcp-com
test_production_agentdb.py•3.53 kB
#!/usr/bin/env python3 """ Test Production AgentDB Adapter Test the new HTTP-based AgentDB adapter """ import asyncio import sys from pathlib import Path # Add src to Python path sys.path.insert(0, str(Path(__file__).parent)) from src.mcp_standards.memory.v2.agentdb_adapter_new import AgentDBAdapter, AgentDBConfig, VectorSearchResult async def test_production_agentdb(): """Test the production AgentDB adapter""" print("šŸ”¬ Testing Production AgentDB Adapter") print("=" * 50) # Create adapter with configuration config = AgentDBConfig( http_host="localhost", http_port=3002, timeout=10, vector_dimension=1536 ) adapter = AgentDBAdapter(config) try: # Test initialization print("⚔ Initializing AgentDB adapter...") success = await adapter.initialize() if not success: print("āŒ Failed to initialize AgentDB adapter") return print("āœ… AgentDB adapter initialized successfully") # Test vector storage print("\nšŸ“„ Testing vector storage...") test_vector = [0.1] * 1536 # Create 1536-dimensional test vector test_metadata = { "pattern_type": "correction", "category": "package-management", "description": "test pattern", "confidence": 0.8 } stored_id = await adapter.store_vector(test_vector, test_metadata) print(f"āœ… Vector stored with ID: {stored_id}") # Test vector search print("\nšŸ” Testing vector search...") search_results = await adapter.search_vectors( query_vector=test_vector, top_k=5, similarity_threshold=0.0 ) print(f"āœ… Found {len(search_results)} similar vectors") for i, result in enumerate(search_results): print(f" {i+1}. ID: {result.vector_id}") print(f" Similarity: {result.similarity_score:.3f}") print(f" Metadata: {result.metadata}") # Test statistics print("\nšŸ“Š Testing statistics...") stats = await adapter.get_statistics() print(f"āœ… Database statistics:") for key, value in stats.items(): print(f" {key}: {value}") # Test multiple vectors print("\nšŸ“¦ Testing multiple vectors...") for i in range(3): vector = [0.1 + i * 0.1] * 1536 metadata = { "pattern_type": "test", "index": i, "description": f"test pattern {i}" } vector_id = await adapter.store_vector(vector, metadata) print(f" Stored vector {i+1}: {vector_id}") # Search again to see all vectors print("\nšŸ” Searching all patterns...") all_results = await adapter.search_vectors( query_vector=test_vector, top_k=10, similarity_threshold=0.0 ) print(f"āœ… Total vectors found: {len(all_results)}") for result in all_results: print(f" • {result.vector_id}: {result.metadata.get('description')} (sim: {result.similarity_score:.3f})") print("\nāœ… Production AgentDB adapter test completed successfully!") except Exception as e: print(f"āŒ Error during test: {e}") import traceback traceback.print_exc() finally: await adapter.close() if __name__ == "__main__": asyncio.run(test_production_agentdb())

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/airmcp-com/mcp-standards'

If you have feedback or need assistance with the MCP directory API, please join our Discord server