Skip to main content
Glama
index.html14.1 kB
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8"> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <title>AgentDB Browser Examples - Self-Learning Architectures</title> <style> * { margin: 0; padding: 0; box-sizing: border-box; } body { font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, Oxygen, Ubuntu, Cantarell, sans-serif; background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); min-height: 100vh; padding: 2rem; } .container { max-width: 1200px; margin: 0 auto; } header { text-align: center; color: white; margin-bottom: 3rem; } h1 { font-size: 2.5rem; margin-bottom: 0.5rem; text-shadow: 2px 2px 4px rgba(0,0,0,0.2); } .subtitle { font-size: 1.2rem; opacity: 0.9; } .examples-grid { display: grid; grid-template-columns: repeat(auto-fit, minmax(350px, 1fr)); gap: 2rem; margin-bottom: 3rem; } .example-card { background: white; border-radius: 12px; padding: 2rem; box-shadow: 0 10px 30px rgba(0,0,0,0.2); transition: transform 0.3s ease, box-shadow 0.3s ease; } .example-card:hover { transform: translateY(-5px); box-shadow: 0 15px 40px rgba(0,0,0,0.3); } .example-icon { font-size: 3rem; margin-bottom: 1rem; } .example-title { font-size: 1.5rem; color: #333; margin-bottom: 0.5rem; } .example-description { color: #666; line-height: 1.6; margin-bottom: 1rem; } .example-features { list-style: none; margin-bottom: 1.5rem; } .example-features li { padding: 0.3rem 0; color: #555; font-size: 0.9rem; } .example-features li:before { content: "✓ "; color: #667eea; font-weight: bold; margin-right: 0.5rem; } .btn { display: inline-block; padding: 0.75rem 1.5rem; background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); color: white; text-decoration: none; border-radius: 6px; font-weight: 600; transition: opacity 0.3s ease; } .btn:hover { opacity: 0.9; } .info-section { background: white; border-radius: 12px; padding: 2rem; margin-bottom: 2rem; box-shadow: 0 10px 30px rgba(0,0,0,0.2); } .info-section h2 { color: #333; margin-bottom: 1rem; } .info-section p { color: #666; line-height: 1.6; margin-bottom: 1rem; } .tech-stack { display: flex; flex-wrap: wrap; gap: 1rem; margin-top: 1rem; } .tech-badge { padding: 0.5rem 1rem; background: #f0f0f0; border-radius: 20px; font-size: 0.9rem; color: #555; } footer { text-align: center; color: white; margin-top: 3rem; opacity: 0.8; } </style> </head> <body> <div class="container"> <header> <h1>🧠 AgentDB Browser Examples</h1> <p class="subtitle">Self-Learning Client-Side Architectures with WASM</p> </header> <div class="info-section"> <h2>About These Examples</h2> <p> These examples demonstrate how to build self-learning AI systems entirely in the browser using AgentDB's WASM backend. Each architecture showcases different approaches to client-side machine learning, persistent memory, and adaptive behavior without requiring a server. </p> <div class="tech-stack"> <span class="tech-badge">🚀 AgentDB WASM</span> <span class="tech-badge">💾 LocalStorage Persistence</span> <span class="tech-badge">🧠 ReasoningBank</span> <span class="tech-badge">⚡ Vector Search</span> <span class="tech-badge">🎯 Self-Learning</span> <span class="tech-badge">📱 100% Client-Side</span> </div> </div> <div class="examples-grid"> <!-- RAG Example --> <div class="example-card"> <div class="example-icon">📚</div> <h3 class="example-title">RAG Self-Learning</h3> <p class="example-description"> Retrieval-Augmented Generation that learns from user queries and feedback to improve responses over time. </p> <ul class="example-features"> <li>Dynamic knowledge base growth</li> <li>Query pattern learning</li> <li>Feedback-based optimization</li> <li>Semantic document retrieval</li> </ul> <a href="rag/index.html" class="btn">Launch Demo</a> </div> <!-- Pattern Learning Example --> <div class="example-card"> <div class="example-icon">🎯</div> <h3 class="example-title">Pattern-Based Learning</h3> <p class="example-description"> Learn user interaction patterns and adapt behavior based on successful task completions. </p> <ul class="example-features"> <li>User behavior tracking</li> <li>Success pattern recognition</li> <li>Adaptive UI/UX optimization</li> <li>Predictive task assistance</li> </ul> <a href="pattern-learning/index.html" class="btn">Launch Demo</a> </div> <!-- Experience Replay Example --> <div class="example-card"> <div class="example-icon">🎮</div> <h3 class="example-title">Experience Replay</h3> <p class="example-description"> Reinforcement learning-style architecture that stores experiences and learns optimal strategies. </p> <ul class="example-features"> <li>Experience buffer management</li> <li>Q-Learning implementation</li> <li>Policy improvement over time</li> <li>Reward-based optimization</li> </ul> <a href="experience-replay/index.html" class="btn">Launch Demo</a> </div> <!-- Collaborative Filtering Example --> <div class="example-card"> <div class="example-icon">🤝</div> <h3 class="example-title">Collaborative Filtering</h3> <p class="example-description"> Build recommendation systems that learn from user preferences and similar user patterns. </p> <ul class="example-features"> <li>User similarity matching</li> <li>Preference vector learning</li> <li>Cross-user pattern transfer</li> <li>Cold-start handling</li> </ul> <a href="collaborative-filtering/index.html" class="btn">Launch Demo</a> </div> <!-- Adaptive Recommendations Example --> <div class="example-card"> <div class="example-icon">🎨</div> <h3 class="example-title">Adaptive Recommendations</h3> <p class="example-description"> Dynamic content recommendation system that adapts to user behavior and context in real-time. </p> <ul class="example-features"> <li>Context-aware suggestions</li> <li>Multi-armed bandit optimization</li> <li>Real-time adaptation</li> <li>Exploration vs exploitation</li> </ul> <a href="adaptive-recommendations/index.html" class="btn">Launch Demo</a> </div> </div> <div class="info-section"> <h2>⚡ Advanced & Exotic Examples</h2> <p> Explore cutting-edge AI concepts implemented entirely in the browser. These examples demonstrate futuristic architectures inspired by quantum computing, neuroscience, and advanced machine learning research. </p> </div> <div class="examples-grid"> <!-- Swarm Intelligence Example --> <div class="example-card"> <div class="example-icon">🐝</div> <h3 class="example-title">Swarm Intelligence</h3> <p class="example-description"> Emergent collective behavior through particle swarm optimization, stigmergy, and pheromone trails. </p> <ul class="example-features"> <li>Multi-agent coordination</li> <li>Pheromone-based pathfinding</li> <li>Emergent intelligence</li> <li>Foraging & flocking behaviors</li> </ul> <a href="swarm-intelligence/index.html" class="btn">Launch Demo</a> </div> <!-- Meta-Learning Example --> <div class="example-card"> <div class="example-icon">🧠</div> <h3 class="example-title">Meta-Learning (MAML)</h3> <p class="example-description"> Learning to learn - rapidly adapt to new tasks with just a few examples using Model-Agnostic Meta-Learning. </p> <ul class="example-features"> <li>Few-shot learning</li> <li>Meta-parameter optimization</li> <li>Rapid task adaptation</li> <li>Inner/outer loop training</li> </ul> <a href="meta-learning/index.html" class="btn">Launch Demo</a> </div> <!-- Neuro-Symbolic Example --> <div class="example-card"> <div class="example-icon">🧬</div> <h3 class="example-title">Neuro-Symbolic Reasoning</h3> <p class="example-description"> Hybrid AI combining neural pattern recognition with symbolic logic for interpretable reasoning. </p> <ul class="example-features"> <li>Neural + symbolic fusion</li> <li>Logical rule inference</li> <li>Explainable AI decisions</li> <li>Forward chaining reasoning</li> </ul> <a href="neuro-symbolic/index.html" class="btn">Launch Demo</a> </div> <!-- Quantum-Inspired Example --> <div class="example-card"> <div class="example-icon">⚛️</div> <h3 class="example-title">Quantum-Inspired Optimization</h3> <p class="example-description"> Global optimization using quantum computing principles: superposition, entanglement, and tunneling. </p> <ul class="example-features"> <li>Quantum particle swarm</li> <li>Superposition states</li> <li>Tunneling through barriers</li> <li>Entangled particles</li> </ul> <a href="quantum-inspired/index.html" class="btn">Launch Demo</a> </div> <!-- Continual Learning Example --> <div class="example-card"> <div class="example-icon">🧬</div> <h3 class="example-title">Continual Learning</h3> <p class="example-description"> Lifelong learning without catastrophic forgetting using Elastic Weight Consolidation and experience replay. </p> <ul class="example-features"> <li>Sequential task learning</li> <li>EWC regularization</li> <li>Memory consolidation</li> <li>Anti-forgetting mechanisms</li> </ul> <a href="continual-learning/index.html" class="btn">Launch Demo</a> </div> </div> <div class="info-section"> <h2>🔧 Technical Features</h2> <p><strong>All examples include:</strong></p> <ul style="list-style: none; padding-left: 1rem;"> <li>✓ WASM-powered vector database running entirely in browser</li> <li>✓ LocalStorage/IndexedDB persistence for offline capabilities</li> <li>✓ ReasoningBank integration for pattern and experience management</li> <li>✓ Real-time learning from user interactions</li> <li>✓ Visual feedback showing learning progress</li> <li>✓ Export/import functionality for data portability</li> <li>✓ Zero backend requirements - fully client-side</li> </ul> </div> <footer> <p>Built with AgentDB v1.0.0 | <a href="https://github.com/ruvnet/agentic-flow" style="color: white;">GitHub</a></p> </footer> </div> </body> </html>

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/airmcp-com/mcp-standards'

If you have feedback or need assistance with the MCP directory API, please join our Discord server