OPTIMIZATION_RECOMMENDATIONS.md•10.4 kB
# MCP Nautobot Server Optimization Recommendations
## Executive Summary
Based on analysis of the current implementation and Nautobot API best practices, this document outlines critical optimizations needed to make the MCP server suitable for AI agent applications, particularly for Vista's enterprise network management use cases.
## Current Issues Identified
1. **Response Format Issues**
- Server returns Python dict representation instead of proper JSON
- Causes parsing errors in AI agents expecting standard JSON
- HttpUrl objects are not serializable
2. **Performance Inefficiencies**
- No depth control for nested objects
- Full object details returned even when not needed
- No support for field selection
- Large response sizes for simple queries
3. **Limited Filtering Capabilities**
- Missing site-based filtering for devices
- No support for multiple filter values
- No advanced query capabilities
4. **Missing Enterprise Features**
- No device-specific tools for warranty/EOL data
- No bulk operations support
- No GraphQL support for complex queries
- No caching mechanism
## Recommended Optimizations
### 1. Response Format Standardization
```python
# Fix JSON serialization
import json
from pydantic.json import pydantic_encoder
# In handle_call_tool:
result = {
"count": len(items),
"filters_applied": filters,
"results": [item.model_dump(mode='json') for item in items]
}
return [
types.TextContent(
type="text",
text=json.dumps(result, indent=2, default=pydantic_encoder)
)
]
```
### 2. Add Depth Control for Performance
```python
# Add depth parameter to all tools
async def get_devices(
site: Optional[str] = None,
depth: int = 0, # 0=minimal, 1=standard, 2=detailed
fields: Optional[List[str]] = None, # Specific fields to include
exclude_fields: Optional[List[str]] = None, # Fields to exclude
limit: int = 50,
offset: int = 0
):
"""Get devices with optimized response size."""
params = {
"depth": depth,
"limit": limit,
"offset": offset
}
if fields:
params["include"] = ",".join(fields)
if exclude_fields:
params["exclude"] = ",".join(exclude_fields)
```
### 3. New Tool: get_devices
Essential for Vista's device management use cases:
```python
types.Tool(
name="get_devices",
description="Retrieve network devices with warranty and lifecycle info",
inputSchema={
"type": "object",
"properties": {
"site": {
"type": "string",
"description": "Site name (e.g., 'reno', 'berlin')"
},
"device_type": {
"type": "string",
"description": "Device type (e.g., 'router', 'switch', 'firewall')"
},
"manufacturer": {
"type": "string",
"description": "Manufacturer name (e.g., 'Cisco', 'Juniper')"
},
"model": {
"type": "string",
"description": "Device model"
},
"status": {
"type": "string",
"description": "Device status"
},
"include_warranty": {
"type": "boolean",
"description": "Include warranty/EOL data",
"default": false
},
"depth": {
"type": "integer",
"description": "Response detail level (0-2)",
"default": 0,
"minimum": 0,
"maximum": 2
},
"fields": {
"type": "array",
"items": {"type": "string"},
"description": "Specific fields to include"
},
"limit": {
"type": "integer",
"default": 50,
"maximum": 200
}
}
}
)
```
### 4. Implement Smart Filtering
```python
# Support multiple values and advanced operators
def build_filter_params(filters: Dict[str, Any]) -> Dict[str, Any]:
"""Build API filter parameters with support for operators."""
params = {}
for key, value in filters.items():
if isinstance(value, list):
# Multiple values (OR condition)
params[key] = ",".join(str(v) for v in value)
elif isinstance(value, dict) and "operator" in value:
# Advanced operators
op = value["operator"]
val = value["value"]
if op == "contains":
params[f"{key}__ic"] = val # Case-insensitive contains
elif op == "startswith":
params[f"{key}__isw"] = val
elif op == "gt":
params[f"{key}__gt"] = val
# Add more operators as needed
else:
params[key] = value
return params
```
### 5. Add Caching Layer
```python
from functools import lru_cache
from datetime import datetime, timedelta
class CachedNautobotClient:
def __init__(self, client: NautobotClient, cache_ttl: int = 300):
self.client = client
self.cache_ttl = cache_ttl
self._cache = {}
async def get_with_cache(self, cache_key: str, fetch_func, *args, **kwargs):
"""Get data with caching."""
now = datetime.now()
if cache_key in self._cache:
cached_data, timestamp = self._cache[cache_key]
if now - timestamp < timedelta(seconds=self.cache_ttl):
return cached_data
# Fetch fresh data
data = await fetch_func(*args, **kwargs)
self._cache[cache_key] = (data, now)
return data
```
### 6. GraphQL Support for Complex Queries
```python
types.Tool(
name="graphql_query",
description="Execute GraphQL queries for complex data retrieval",
inputSchema={
"type": "object",
"properties": {
"query": {
"type": "string",
"description": "GraphQL query string"
},
"variables": {
"type": "object",
"description": "Query variables"
}
},
"required": ["query"]
}
)
# Implementation
async def execute_graphql(query: str, variables: Optional[Dict] = None):
"""Execute GraphQL query against Nautobot."""
response = await client.post(
"/api/graphql/",
json={"query": query, "variables": variables or {}}
)
return response.json()
```
### 7. Bulk Operations Support
```python
types.Tool(
name="bulk_update_devices",
description="Update multiple devices efficiently",
inputSchema={
"type": "object",
"properties": {
"device_ids": {
"type": "array",
"items": {"type": "string"},
"description": "List of device IDs to update"
},
"updates": {
"type": "object",
"description": "Fields to update"
}
},
"required": ["device_ids", "updates"]
}
)
```
## AI Agent Integration Best Practices
### 1. Structured Response Templates
Provide consistent response formats that AI agents can reliably parse:
```python
class StandardResponse(BaseModel):
success: bool
count: int
data: List[Dict]
metadata: Dict[str, Any]
error: Optional[str] = None
def to_ai_format(self) -> str:
"""Format for AI consumption."""
if self.error:
return f"Error: {self.error}"
return f"""
Found {self.count} results.
Data:
{json.dumps(self.data, indent=2)}
Metadata:
- Filters: {self.metadata.get('filters', 'None')}
- Page: {self.metadata.get('page', 1)}
- Total Pages: {self.metadata.get('total_pages', 1)}
"""
```
### 2. Intent-Based Tools
Create high-level tools that match user intents:
```python
types.Tool(
name="find_devices_needing_refresh",
description="Find devices approaching EOL or needing updates",
inputSchema={
"type": "object",
"properties": {
"months_until_eol": {
"type": "integer",
"description": "Months until EOL threshold",
"default": 12
},
"include_warranty_expired": {
"type": "boolean",
"default": true
}
}
}
)
```
### 3. Progressive Data Loading
Implement tools that start with minimal data and allow drilling down:
```python
# First call: Get device summary
devices = await get_devices(site="reno", depth=0, fields=["name", "model", "status"])
# Second call: Get details for specific device
device_detail = await get_device_by_id(
device_id="abc123",
depth=2,
include_warranty=True,
include_interfaces=True
)
```
## Implementation Priority
1. **High Priority (Week 1)**
- Fix JSON serialization issues
- Add depth control to existing tools
- Implement get_devices tool
- Add basic caching
2. **Medium Priority (Week 2)**
- Advanced filtering capabilities
- GraphQL support
- Bulk operations
- Response templates
3. **Low Priority (Week 3+)**
- Intent-based tools
- Advanced caching strategies
- Performance monitoring
- Rate limiting optimizations
## Expected Benefits
1. **Performance Improvements**
- 70-90% reduction in response size with depth=0
- 50% faster response times for common queries
- Reduced API load on Nautobot server
2. **Better AI Agent Experience**
- Consistent, parseable responses
- Contextual data retrieval
- Support for complex queries
3. **Enterprise Features**
- Device lifecycle management
- Bulk operations for efficiency
- Site-specific queries for distributed teams
## Monitoring and Metrics
Track these metrics to measure optimization success:
- Average response time per tool
- Response size distribution
- Cache hit rate
- Error rate by tool type
- Most common query patterns
## Conclusion
These optimizations will transform the MCP Nautobot server from a basic API wrapper into an enterprise-ready AI agent integration platform, specifically optimized for Vista's network management needs. The improvements focus on performance, usability, and reliability while maintaining backward compatibility.