Skip to main content
Glama

Carla MCP Server

by agrathwohl
MIXASSIST_SETUP.md9.89 kB
# MixAssist Dataset Setup Guide This guide explains how to download and configure the MixAssist dataset for use with the Carla MCP Server. ## What is MixAssist? MixAssist is a professional audio engineering dataset containing 640 conversations covering: - Drum mixing techniques - Guitar processing - Bass production - Vocal engineering - Keyboard/synth mixing - Overall mix strategies The dataset provides contextual mixing advice and real-world troubleshooting from professional audio engineers. **Research Paper**: [MixAssist: Instruction-Tuned LLMs as AI Mixing Assistants](https://arxiv.org/html/2507.06329v1) ## Quick Setup (Recommended) ### 1. Download and Configure Run the automated setup script: ```bash # Download to default location (~/.cache/mixassist/data) and create config python setup_mixassist.py --download # Or specify custom location python setup_mixassist.py --download --output ~/datasets/mixassist ``` This will: - Download the dataset from Hugging Face (requires `datasets` package) - Verify the download integrity - Create a `.env` configuration file - Display confirmation and next steps ### 2. Restart MCP Server If the MCP server is already running, restart it to load the new configuration: ```bash # Stop the current server (Ctrl+C) # Then restart python server.py ``` ### 3. Verify Access The MixAssist resources will now be available via MCP URIs: - `mixassist://index` - Topic overview - `mixassist://advice/drums/top5` - Top drum mixing tips - `mixassist://search?q=compression` - Search conversations ## Manual Setup ### Prerequisites Install required Python packages: ```bash pip install datasets pandas pyarrow ``` ### Option 1: Download with Script ```bash # Download only (skip config creation) python setup_mixassist.py --download --no-config # Later, create config for existing dataset python setup_mixassist.py --path /path/to/dataset ``` ### Option 2: Manual Download 1. **Download from Hugging Face**: ```python from datasets import load_dataset dataset = load_dataset("MixAssist/mixassist", trust_remote_code=True) for split_name, split_data in dataset.items(): split_data.to_parquet(f"{split_name}-00000-of-00001.parquet") ``` 2. **Create Configuration File**: Create a `.env` file in the project root: ```bash # .env MIXASSIST_DATASET_PATH=/path/to/your/dataset MIXASSIST_ENABLED=true ``` 3. **Verify Dataset**: ```bash python setup_mixassist.py --verify --path /path/to/dataset ``` ## Configuration Options ### Environment Variables Configure MixAssist behavior via environment variables or `.env` file: ```bash # Required: Path to dataset directory MIXASSIST_DATASET_PATH=/home/user/.cache/mixassist/data # Optional: Enable/disable MixAssist resources (default: true) MIXASSIST_ENABLED=true ``` ### Configuration File Locations The system looks for configuration in this order: 1. `.env` file in project root 2. Environment variables (override file config) ### Disabling MixAssist To temporarily disable MixAssist resources without removing the dataset: ```bash # In .env file MIXASSIST_ENABLED=false # Or as environment variable export MIXASSIST_ENABLED=false ``` ## Dataset Structure The downloaded dataset contains three splits: ``` dataset/ ├── train-00000-of-00001.parquet # 340 conversations ├── test-00000-of-00001.parquet # 250 conversations └── validation-00000-of-00001.parquet # 50 conversations ``` **Total**: 640 professional audio engineering conversations **Topic Distribution**: - Drums: 138 conversations - Overall Mix: 93 conversations - Guitars: 58 conversations - Bass: 18 conversations - Vocals: 18 conversations - Keys: 15 conversations ## Using MixAssist Resources ### Resource URIs Once configured, access MixAssist data via these URIs: #### Index Resources (Tiny - <1K tokens) ``` mixassist://index # Topic counts and sample IDs mixassist://schema # Dataset schema information ``` #### Topic Indexes (Small - <500 tokens) ``` mixassist://index/drums # All drum conversation IDs mixassist://index/guitars # All guitar conversation IDs mixassist://index/bass # All bass conversation IDs mixassist://index/vocals # All vocal conversation IDs mixassist://index/keys # All keys conversation IDs mixassist://index/overall_mix # All overall mix IDs ``` #### Curated Advice (Small - <3K tokens) ``` mixassist://advice/drums/top5 # Top 5 drum mixing tips mixassist://advice/guitars/top5 # Top 5 guitar tips mixassist://advice/bass/top5 # Top 5 bass tips mixassist://advice/vocals/top5 # Top 5 vocal tips mixassist://advice/keys/top5 # Top 5 keys tips mixassist://advice/overall_mix/top5 # Top 5 overall mix tips ``` #### Search (Medium - <5K tokens) ``` mixassist://search?q=compression # Search for "compression" mixassist://search?q=multiband # Search for "multiband" mixassist://search?q=sidechain # Search for "sidechain" ``` #### Individual Conversations (Medium - <1K tokens each) ``` mixassist://conversation/{conv_id} # Get specific conversation ``` ### Token-Efficient Access Pattern **Best Practice**: Always use the hierarchical pattern to minimize token usage: 1. **Start with index** → See topic counts 2. **Browse top5 advice** → Get curated best practices 3. **Search if needed** → Find specific techniques 4. **Fetch conversations** → Only when top5/search insufficient ### Example: Using in Claude Code ```markdown User: "Help me with drum overhead compression" AI (internally): Let me check MixAssist for professional advice ReadMcpResourceTool(server="carla-mcp-server", uri="mixassist://advice/drums/top5") AI: Based on professional mixing techniques, here's how to approach drum overhead compression: [Curated advice from MixAssist top 5 drum tips] In my experience, multiband compression on overheads works particularly well for controlling cymbal harshness while maintaining the natural drum ambience. Try setting a ratio of 3:1 on the high band (above 8kHz) with a slower attack (30ms) to preserve transients. Would you like me to set up these parameters on your overhead bus? ``` ## Troubleshooting ### Dataset Not Loading **Symptom**: Resources show as unavailable or errors when accessing **Solutions**: 1. Verify dataset path is correct: ```bash python setup_mixassist.py --verify --path /your/dataset/path ``` 2. Check .env configuration: ```bash cat .env | grep MIXASSIST ``` 3. Ensure all required files exist: ```bash ls -lh /path/to/dataset/*.parquet # Should show: train, test, validation parquet files ``` ### Permission Errors **Symptom**: Cannot write to cache directory **Solution**: Use a writable location: ```bash python setup_mixassist.py --download --output ~/mixassist_data ``` ### Hugging Face Authentication **Symptom**: Download fails with authentication error **Solution**: Login to Hugging Face: ```bash pip install huggingface-hub huggingface-cli login # Then retry download python setup_mixassist.py --download --force ``` ### Memory Issues **Symptom**: Server uses too much memory **Solution**: MixAssist loads lazily - data is only loaded when first accessed. If memory is still an issue: 1. Disable MixAssist temporarily: ```bash # In .env MIXASSIST_ENABLED=false ``` 2. Or completely uninstall: ```bash rm -rf ~/.cache/mixassist # Remove from .env: # MIXASSIST_DATASET_PATH=... ``` ## Advanced Usage ### Custom Dataset Location If you need to store the dataset in a specific location (e.g., on a different drive): ```bash # Download to custom location python setup_mixassist.py --download --output /mnt/data/mixassist # Or manually configure echo "MIXASSIST_DATASET_PATH=/mnt/data/mixassist" >> .env ``` ### Programmatic Access You can also access MixAssist resources programmatically: ```python from mixassist_resources import MixAssistResourceProvider # Initialize with custom path provider = MixAssistResourceProvider(dataset_path="/path/to/dataset") # Check availability if provider.is_available(): # Get curated advice advice = provider.get_resource_content("mixassist://advice/drums/top5") print(advice) # Search conversations results = provider.get_resource_content("mixassist://search?q=compression") print(results) ``` ## Dataset Information ### Dataset Statistics - **Total Conversations**: 640 - **Splits**: Train (340), Test (250), Validation (50) - **Topics**: 6 (Drums, Overall Mix, Guitars, Bass, Vocals, Keys) - **Average Conversation Length**: ~200-500 tokens - **Format**: Apache Parquet (efficient columnar storage) ### Data Schema Each conversation contains: - `conversation_id`: Unique identifier - `topic`: Audio mixing domain - `turn_id`: Sequential turn number - `input_history`: Previous conversation context - `user`: Engineer's question - `assistant`: Expert mixing advice - `audio_file`: Referenced audio (metadata only) ### Research Citation If you use MixAssist in research or production, please cite: ```bibtex @article{mixassist2024, title={MixAssist: Instruction-Tuned LLMs as AI Mixing Assistants}, author={[Authors]}, journal={arXiv preprint arXiv:2507.06329}, year={2024}, url={https://arxiv.org/html/2507.06329v1} } ``` ## Support For issues with MixAssist setup: 1. Check [MIXASSIST_SETUP.md](MIXASSIST_SETUP.md) (this file) 2. Review logs: `carla_mcp_server.log` 3. File an issue: [GitHub Issues](https://github.com/your-org/carla-mcp-server/issues) 4. Include: - Python version - Output of `python setup_mixassist.py --verify --path /your/path` - Relevant log messages --- **Ready to enhance your mixing workflow with professional audio engineering knowledge!** 🎛️✨

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/agrathwohl/carla-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server