Skip to main content
Glama

Expert Registry MCP Server

by agentience
expert-registry-mcp-design.md22.4 kB
# Expert Registry MCP Server Design **Last Updated: 2025-06-30** ## Overview This document outlines the design for implementing the expert-system as a high-performance MCP (Model Context Protocol) server with vector and graph database integration. The server provides expert discovery, registration, and context injection capabilities while maintaining file-based updates and optimal performance through semantic search and relationship modeling. ## Architecture ``` ┌─────────────────────────────────────────────────────────────────────┐ │ Expert Registry MCP Server │ ├─────────────────────────────────────────────────────────────────────┤ │ │ │ ┌─────────────┐ ┌──────────────┐ ┌─────────────────┐ │ │ │ Registry │ │ Selection │ │ Context │ │ │ │ Management │ │ Engine │ │ Injection │ │ │ └──────┬──────┘ └──────┬───────┘ └────────┬────────┘ │ │ │ │ │ │ │ ┌──────┴─────────────────┴────────────────────┴────────┐ │ │ │ Discovery Layer │ │ │ │ ┌─────────────┐ ┌──────────────┐ ┌─────────────┐ │ │ │ │ │ Vector │ │ Graph │ │ Hybrid │ │ │ │ │ │ Database │ │ Database │ │ Search │ │ │ │ │ └─────────────┘ └──────────────┘ └─────────────┘ │ │ │ └──────────────────────────────────────────────────────┘ │ │ │ │ ┌──────────────────────────────────────────────────────┐ │ │ │ Core Services Layer │ │ │ │ • Caching • File Watching • Performance Tracking │ │ │ └──────────────────────────────────────────────────────┘ │ │ │ │ ┌──────────────────────────────────────────────────────┐ │ │ │ MCP Interface Layer │ │ │ │ Tools │ Resources │ Notifications │ │ │ └──────────────────────────────────────────────────────┘ │ └─────────────────────────────────────────────────────────────────────┘ ``` ## Database Options Analysis ### 1. Vector Database Options #### ChromaDB (Recommended for Simplicity) ```python # Embedded, lightweight, perfect for local MCP server import chromadb client = chromadb.Client( path: "./expert-system/vector-db" }); // Benefits: // - Embedded (no separate server) // - Python & JS clients // - Built-in persistence // - Simple API ``` #### Weaviate (For Advanced Features) ```python // More features but requires Docker import weaviate from 'weaviate-ts-client'; const client = weaviate.client({ scheme: 'http', host: 'localhost:8080', }); // Benefits: // - Hybrid search (vector + keyword) // - GraphQL API // - Schema enforcement // - More scalable ``` #### Qdrant (For Performance) ```python // High performance, Rust-based import { QdrantClient } from '@qdrant/js-client-rest'; const client = new QdrantClient({ host: 'localhost', port: 6333, }); // Benefits: // - Extremely fast // - Low memory footprint // - Advanced filtering // - Rust performance ``` ### 2. Graph Database Options #### Neo4j (Recommended for Features) ```python // Most mature graph database import neo4j from 'neo4j-driver'; const driver = neo4j.driver( 'bolt://localhost:7687', neo4j.auth.basic('neo4j', 'password') ); // Benefits: // - Cypher query language // - ACID compliance // - Rich relationship modeling // - Large ecosystem ``` #### ArangoDB (For Flexibility) ```python // Multi-model: Document, Graph, Key-Value import { Database } from 'arangojs'; const db = new Database({ url: 'http://localhost:8529', }); // Benefits: // - Multi-model database // - AQL query language // - Horizontal scaling // - JavaScript friendly ``` #### DuckDB + Graph Extension (For Embedded) ```python // Embedded analytical database with graph capabilities import { Database } from 'duckdb-async'; const db = await Database.create(':memory:'); await db.run('INSTALL graph; LOAD graph;'); // Benefits: // - Fully embedded // - No separate server // - SQL with graph extensions // - Excellent performance ``` ## Enhanced Data Models ### 1. Vector Embeddings Model ```python interface ExpertEmbedding { expertId: string; embeddings: { description: number[]; // 384-dim from all-MiniLM-L6-v2 domains: number[]; // Domain-specific embeddings technologies: number[]; // Technology stack embeddings patterns: number[]; // Code pattern embeddings constraints: number[]; // Constraint embeddings }; metadata: { model: string; // Embedding model used timestamp: Date; version: string; }; } interface TaskEmbedding { taskId: string; embedding: number[]; // Task description embedding context: { technologies: string[]; codebaseFeatures: string[]; requirements: string[]; }; } ``` ### 2. Graph Relationships Model ```python // Neo4j Cypher Schema interface GraphSchema { nodes: { Expert: { id: string; name: string; version: string; embedding: number[]; }; Technology: { name: string; category: string; embedding: number[]; }; Domain: { name: string; description: string; }; Task: { id: string; type: string; description: string; embedding: number[]; }; Pattern: { id: string; name: string; description: string; }; }; relationships: { SPECIALIZES_IN: 'Expert -> Technology', COMPATIBLE_WITH: 'Expert -> Technology', BELONGS_TO: 'Technology -> Domain', REQUIRES: 'Task -> Technology', USES_PATTERN: 'Expert -> Pattern', RELATED_TO: 'Technology -> Technology', SUCCEEDED_WITH: 'Task -> Expert', }; } ``` ## Enhanced Discovery Algorithms ### 1. Semantic Search with Vector DB ```python class SemanticExpertDiscovery { private vectorDB: ChromaClient; private embedder: EmbeddingModel; async discoverExperts(taskDescription: string, limit: number = 5) { // 1. Generate task embedding const taskEmbedding = await this.embedder.embed(taskDescription); // 2. Search across multiple embedding spaces const results = await Promise.all([ // Search by description similarity this.vectorDB.collection('expert-descriptions').query({ queryEmbeddings: [taskEmbedding], nResults: limit * 2, }), // Search by pattern matching this.vectorDB.collection('expert-patterns').query({ queryEmbeddings: [taskEmbedding], nResults: limit, }), // Search by constraint compatibility this.vectorDB.collection('expert-constraints').query({ queryEmbeddings: [taskEmbedding], nResults: limit, }), ]); // 3. Combine and rank results return this.rankResults(results); } async findSimilarExperts(expertId: string, limit: number = 3) { const expert = await this.getExpertEmbedding(expertId); return this.vectorDB.collection('experts').query({ queryEmbeddings: [expert.embeddings.description], where: { id: { $ne: expertId } }, nResults: limit, }); } } ``` ### 2. Graph-Based Discovery ```python class GraphExpertDiscovery { private graphDB: Neo4jDriver; async discoverExpertNetwork(taskRequirements: string[]) { // 1. Find experts through technology relationships const query = ` MATCH (t:Technology) WHERE t.name IN $technologies MATCH (e:Expert)-[:SPECIALIZES_IN]->(t) OPTIONAL MATCH (e)-[:SUCCEEDED_WITH]->(task:Task) WHERE task.type = $taskType WITH e, count(DISTINCT t) as techMatches, count(task) as successCount ORDER BY techMatches DESC, successCount DESC LIMIT $limit RETURN e, techMatches, successCount `; const result = await this.graphDB.run(query, { technologies: taskRequirements, taskType: 'refactoring', limit: 5 }); return this.processGraphResults(result); } async findExpertCombinations(technologies: string[]) { // Find complementary expert pairs const query = ` MATCH (e1:Expert)-[:SPECIALIZES_IN]->(t1:Technology) WHERE t1.name IN $technologies MATCH (e2:Expert)-[:SPECIALIZES_IN]->(t2:Technology) WHERE t2.name IN $technologies AND e1.id < e2.id AND NOT (e1)-[:SPECIALIZES_IN]->(t2) WITH e1, e2, collect(DISTINCT t1.name) as e1Tech, collect(DISTINCT t2.name) as e2Tech WHERE size(e1Tech + e2Tech) >= size($technologies) * 0.8 RETURN e1, e2, e1Tech, e2Tech LIMIT 3 `; return this.graphDB.run(query, { technologies }); } async getExpertLineage(expertId: string) { // Trace expert evolution and relationships const query = ` MATCH (e:Expert {id: $expertId}) OPTIONAL MATCH (e)-[:EVOLVED_FROM]->(previous:Expert) OPTIONAL MATCH (e)-[:RELATED_TO]->(related:Expert) OPTIONAL MATCH (e)-[:USES_PATTERN]->(p:Pattern) RETURN e, collect(DISTINCT previous) as previousVersions, collect(DISTINCT related) as relatedExperts, collect(DISTINCT p) as patterns `; return this.graphDB.run(query, { expertId }); } } ``` ### 3. Hybrid Search Strategy ```python class HybridExpertDiscovery { private semantic: SemanticExpertDiscovery; private graph: GraphExpertDiscovery; private cache: LRUCache<string, any>; async discover(context: DiscoveryContext): Promise<ExpertRecommendation[]> { const cacheKey = this.getCacheKey(context); if (this.cache.has(cacheKey)) { return this.cache.get(cacheKey); } // 1. Parallel discovery across both systems const [semanticResults, graphResults] = await Promise.all([ this.semantic.discoverExperts(context.description), this.graph.discoverExpertNetwork(context.technologies) ]); // 2. Merge and score results const merged = this.mergeResults(semanticResults, graphResults); // 3. Apply collaborative filtering const enhanced = await this.applyCollaborativeFiltering(merged, context); // 4. Cache results this.cache.set(cacheKey, enhanced); return enhanced; } private mergeResults(semantic: any[], graph: any[]): ExpertCandidate[] { const scoreMap = new Map<string, ExpertScore>(); // Weight semantic similarity semantic.forEach((result, index) => { const score = scoreMap.get(result.id) || { total: 0, components: {} }; score.components.semantic = (1 - index / semantic.length) * 0.4; score.total += score.components.semantic; scoreMap.set(result.id, score); }); // Weight graph relationships graph.forEach((result) => { const score = scoreMap.get(result.id) || { total: 0, components: {} }; score.components.graph = result.techMatches / result.totalTech * 0.3; score.components.success = Math.min(result.successCount / 10, 1) * 0.3; score.total += score.components.graph + score.components.success; scoreMap.set(result.id, score); }); return Array.from(scoreMap.entries()) .sort((a, b) => b[1].total - a[1].total) .map(([id, score]) => ({ expertId: id, score })); } } ``` ## Enhanced MCP Tools ### Vector Search Tools ```json { "name": "expert_semantic_search", "description": "Search experts using semantic similarity", "parameters": { "query": { "type": "string", "required": true, "description": "Natural language description of the task" }, "searchMode": { "type": "string", "enum": ["description", "patterns", "constraints", "hybrid"], "default": "hybrid" }, "limit": { "type": "number", "default": 5 } } } ``` ```json { "name": "expert_find_similar", "description": "Find experts similar to a given expert", "parameters": { "expertId": { "type": "string", "required": true }, "similarity": { "type": "string", "enum": ["overall", "domain", "technology", "patterns"], "default": "overall" } } } ``` ### Graph Query Tools ```json { "name": "expert_explore_network", "description": "Explore expert relationships and networks", "parameters": { "startExpertId": { "type": "string", "required": true }, "depth": { "type": "number", "default": 2, "maximum": 4 }, "relationshipTypes": { "type": "array", "items": { "type": "string", "enum": ["SPECIALIZES_IN", "COMPATIBLE_WITH", "EVOLVED_FROM", "RELATED_TO"] } } } } ``` ```json { "name": "expert_find_combinations", "description": "Find complementary expert combinations", "parameters": { "requirements": { "type": "array", "items": "string", "required": true, "description": "List of required technologies/skills" }, "teamSize": { "type": "number", "default": 2, "minimum": 2, "maximum": 4 } } } ``` ### Hybrid Discovery Tools ```json { "name": "expert_smart_discover", "description": "Use AI-powered discovery combining vector and graph search", "parameters": { "context": { "type": "object", "required": true, "properties": { "description": { "type": "string", "required": true }, "technologies": { "type": "array", "items": "string" }, "constraints": { "type": "array", "items": "string" }, "preferredStrategy": { "type": "string", "enum": ["single", "team", "evolutionary"] } } } } } ``` ## Implementation Architecture ### 1. Database Initialization ```python class DatabaseManager { private vectorDB: ChromaClient; private graphDB: Neo4jDriver; private embedder: EmbeddingModel; async initialize() { // Initialize vector database this.vectorDB = new ChromaClient({ path: "./expert-system/vector-db" }); // Create collections await this.createVectorCollections(); // Initialize graph database this.graphDB = neo4j.driver( process.env.NEO4J_URI || 'bolt://localhost:7687', neo4j.auth.basic('neo4j', process.env.NEO4J_PASSWORD || 'password') ); // Create graph schema await this.createGraphSchema(); // Initialize embedding model this.embedder = new EmbeddingModel('all-MiniLM-L6-v2'); // Sync with file system await this.syncDatabases(); } private async createVectorCollections() { const collections = [ 'expert-descriptions', 'expert-patterns', 'expert-constraints', 'technologies', 'task-history' ]; for (const name of collections) { await this.vectorDB.createCollection({ name, metadata: { 'hnsw:space': 'cosine' } }); } } private async createGraphSchema() { const constraints = [ 'CREATE CONSTRAINT expert_id IF NOT EXISTS FOR (e:Expert) REQUIRE e.id IS UNIQUE', 'CREATE CONSTRAINT tech_name IF NOT EXISTS FOR (t:Technology) REQUIRE t.name IS UNIQUE', 'CREATE INDEX expert_embedding IF NOT EXISTS FOR (e:Expert) ON (e.embedding)', 'CREATE INDEX task_type IF NOT EXISTS FOR (t:Task) ON (t.type)' ]; for (const constraint of constraints) { await this.graphDB.run(constraint); } } async syncDatabases() { // Load registry const registry = await this.loadRegistry(); // Update vector embeddings await this.updateVectorEmbeddings(registry.experts); // Update graph relationships await this.updateGraphRelationships(registry.experts); } } ``` ### 2. Embedding Pipeline ```python class EmbeddingPipeline { private model: any; // Transformer model private cache: Map<string, number[]>; async processExpert(expert: Expert): Promise<ExpertEmbedding> { const embeddings = { description: await this.embed(expert.description), domains: await this.embedArray(expert.domains), technologies: await this.embedTechnologies(expert.specializations), patterns: await this.embedPatterns(expert.id), constraints: await this.embedConstraints(expert.id) }; return { expertId: expert.id, embeddings, metadata: { model: 'all-MiniLM-L6-v2', timestamp: new Date(), version: expert.version } }; } private async embedArray(texts: string[]): Promise<number[]> { const embeddings = await Promise.all( texts.map(text => this.embed(text)) ); return this.averageEmbeddings(embeddings); } private averageEmbeddings(embeddings: number[][]): number[] { const dim = embeddings[0].length; const avg = new Array(dim).fill(0); embeddings.forEach(emb => { emb.forEach((val, i) => avg[i] += val); }); return avg.map(val => val / embeddings.length); } } ``` ### 3. Performance Optimizations ```python class OptimizedDiscovery { private vectorIndex: AnnoyIndex; private graphCache: LRUCache<string, any>; private precomputedPairs: Map<string, string[]>; async initialize() { // Build Annoy index for ultra-fast similarity search this.vectorIndex = new AnnoyIndex(384, 'angular'); await this.buildVectorIndex(); // Precompute common expert pairs await this.precomputeExpertPairs(); // Warm up caches await this.warmupCaches(); } private async buildVectorIndex() { const experts = await this.getAllExperts(); experts.forEach((expert, i) => { this.vectorIndex.addItem(i, expert.embedding); }); this.vectorIndex.build(10); // 10 trees this.vectorIndex.save('./expert-system/vector-index.ann'); } async fastSimilaritySearch(query: number[], k: number = 5) { // Sub-millisecond similarity search const indices = this.vectorIndex.getNNsByVector(query, k); return this.hydrateResults(indices); } } ``` ## Migration Strategy ### Phase 1: Add Vector Database (Week 1) - Install ChromaDB - Create embedding pipeline - Index existing experts - Add semantic search tools ### Phase 2: Add Graph Database (Week 2) - Deploy Neo4j (or embedded alternative) - Model relationships - Import expert network - Add graph query tools ### Phase 3: Implement Hybrid Search (Week 3) - Combine vector and graph results - Implement scoring algorithm - Add caching layer - Create hybrid tools ### Phase 4: Optimize Performance (Week 4) - Build vector indices - Precompute common queries - Implement query planning - Add monitoring ## Configuration ```json { "expert-registry-mcp": { "databases": { "vector": { "type": "chromadb", "path": "./expert-system/vector-db", "embedding_model": "all-MiniLM-L6-v2" }, "graph": { "type": "neo4j", "uri": "bolt://localhost:7687", "auth": { "user": "neo4j", "password": "${NEO4J_PASSWORD}" } } }, "performance": { "vector_index_type": "annoy", "cache_size_mb": 200, "precompute_pairs": true, "warmup_on_start": true } } } ``` ## Benefits ### 1. Enhanced Discovery - **Semantic Understanding**: Find experts by meaning, not just keywords - **Relationship Awareness**: Understand how experts complement each other - **Context-Aware**: Consider task context in selection ### 2. Better Recommendations - **Similar Experts**: Find alternatives when primary expert unavailable - **Expert Teams**: Automatically suggest complementary expert combinations - **Evolution Tracking**: Understand expert version relationships ### 3. Performance - **Sub-second Queries**: Vector indices enable millisecond searches - **Scalability**: Handle thousands of experts efficiently - **Smart Caching**: Precompute common patterns ### 4. Intelligence - **Learning System**: Improve recommendations based on usage - **Pattern Recognition**: Identify successful expert combinations - **Predictive Selection**: Anticipate needs based on context ## Conclusion Adding vector and graph databases transforms the Expert Registry from a simple lookup system to an intelligent discovery platform. The hybrid approach combines semantic understanding with relationship modeling for optimal expert selection.

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/agentience/expert-registry-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server