# Python Code Updates for Design Document
**Last Updated: 2025-06-30**
## Database Client Examples
### ChromaDB (Vector Database)
```python
# Embedded, lightweight, perfect for local MCP server
import chromadb
client = chromadb.Client()
# or with persistence
client = chromadb.PersistentClient(path="./expert-system/vector-db")
# Benefits:
# - Embedded (no separate server)
# - Python & JS clients
# - Built-in persistence
# - Simple API
```
### Weaviate (For Advanced Features)
```python
# More features but requires Docker
import weaviate
client = weaviate.Client(
url="http://localhost:8080",
)
# Benefits:
# - Hybrid search (vector + keyword)
# - GraphQL API
# - Schema enforcement
# - More scalable
```
### Qdrant (For Performance)
```python
# High performance, Rust-based
from qdrant_client import QdrantClient
client = QdrantClient(
host="localhost",
port=6333,
)
# Benefits:
# - Extremely fast
# - Low memory footprint
# - Advanced filtering
# - Rust performance
```
### Neo4j (Graph Database)
```python
# Most mature graph database
from neo4j import GraphDatabase
driver = GraphDatabase.driver(
"bolt://localhost:7687",
auth=("neo4j", "password")
)
# Benefits:
# - Cypher query language
# - ACID compliance
# - Rich relationship modeling
# - Large ecosystem
```
### ArangoDB (For Flexibility)
```python
# Multi-model: Document, Graph, Key-Value
from arango import ArangoClient
client = ArangoClient(hosts='http://localhost:8529')
db = client.db('_system', username='root', password='password')
# Benefits:
# - Multi-model database
# - AQL query language
# - Horizontal scaling
# - Python friendly
```
### DuckDB (For Embedded Analytics)
```python
# Embedded analytical database
import duckdb
conn = duckdb.connect(':memory:')
# Install and load graph extension
conn.execute('INSTALL graph')
conn.execute('LOAD graph')
# Benefits:
# - Fully embedded
# - No separate server
# - SQL with graph extensions
# - Excellent performance
```
## Data Models (Pydantic)
### Vector Embeddings Model
```python
from pydantic import BaseModel
from typing import List, Dict
from datetime import datetime
class ExpertEmbedding(BaseModel):
expert_id: str
embeddings: Dict[str, List[float]] = {
"description": [], # 384-dim from all-MiniLM-L6-v2
"domains": [], # Domain-specific embeddings
"technologies": [], # Technology stack embeddings
"patterns": [], # Code pattern embeddings
"constraints": [] # Constraint embeddings
}
metadata: Dict[str, any] = {
"model": "all-MiniLM-L6-v2",
"timestamp": datetime.now(),
"version": "1.0.0"
}
class TaskEmbedding(BaseModel):
task_id: str
embedding: List[float] # Task description embedding
context: Dict[str, List[str]] = {
"technologies": [],
"codebase_features": [],
"requirements": []
}
```
## Discovery Classes
### Semantic Search with Vector DB
```python
from typing import List, Optional
import chromadb
from sentence_transformers import SentenceTransformer
class SemanticExpertDiscovery:
def __init__(self):
self.vector_db = chromadb.Client()
self.embedder = SentenceTransformer('all-MiniLM-L6-v2')
async def discover_experts(self, task_description: str, limit: int = 5):
# 1. Generate task embedding
task_embedding = self.embedder.encode(task_description)
# 2. Search across multiple embedding spaces
results = []
# Search by description similarity
desc_results = self.vector_db.collection('expert-descriptions').query(
query_embeddings=[task_embedding],
n_results=limit * 2
)
results.append(desc_results)
# Search by pattern matching
pattern_results = self.vector_db.collection('expert-patterns').query(
query_embeddings=[task_embedding],
n_results=limit
)
results.append(pattern_results)
# 3. Combine and rank results
return self.rank_results(results)
```
### Graph-Based Discovery
```python
from neo4j import AsyncGraphDatabase
class GraphExpertDiscovery:
def __init__(self, uri: str, auth: tuple):
self.driver = AsyncGraphDatabase.driver(uri, auth=auth)
async def discover_expert_network(self, task_requirements: List[str]):
# 1. Find experts through technology relationships
query = """
MATCH (t:Technology)
WHERE t.name IN $technologies
MATCH (e:Expert)-[:SPECIALIZES_IN]->(t)
OPTIONAL MATCH (e)-[:SUCCEEDED_WITH]->(task:Task)
WHERE task.type = $task_type
WITH e, count(DISTINCT t) as tech_matches,
count(task) as success_count
ORDER BY tech_matches DESC, success_count DESC
LIMIT $limit
RETURN e, tech_matches, success_count
"""
async with self.driver.session() as session:
result = await session.run(query, {
"technologies": task_requirements,
"task_type": "refactoring",
"limit": 5
})
return await self.process_graph_results(result)
```
### Hybrid Search Strategy
```python
from cachetools import LRUCache
from typing import Dict, Any
class HybridExpertDiscovery:
def __init__(self, semantic_engine, graph_engine):
self.semantic = semantic_engine
self.graph = graph_engine
self.cache = LRUCache(maxsize=100)
async def discover(self, context: Dict[str, Any]) -> List[Dict[str, Any]]:
cache_key = self.get_cache_key(context)
if cache_key in self.cache:
return self.cache[cache_key]
# 1. Parallel discovery across both systems
semantic_results = await self.semantic.discover_experts(
context['description']
)
graph_results = await self.graph.discover_expert_network(
context['technologies']
)
# 2. Merge and score results
merged = self.merge_results(semantic_results, graph_results)
# 3. Apply collaborative filtering
enhanced = await self.apply_collaborative_filtering(merged, context)
# 4. Cache results
self.cache[cache_key] = enhanced
return enhanced
```
## Performance Optimizations
### Optimized Discovery with Annoy
```python
from annoy import AnnoyIndex
from cachetools import LRUCache
class OptimizedDiscovery:
def __init__(self, vector_dim: int = 384):
self.vector_index = AnnoyIndex(vector_dim, 'angular')
self.graph_cache = LRUCache(maxsize=1000)
self.precomputed_pairs = {}
async def initialize(self):
# Build Annoy index for ultra-fast similarity search
experts = await self.get_all_experts()
for i, expert in enumerate(experts):
self.vector_index.add_item(i, expert.embedding)
self.vector_index.build(10) # 10 trees
self.vector_index.save('./expert-system/vector-index.ann')
# Precompute common expert pairs
await self.precompute_expert_pairs()
# Warm up caches
await self.warmup_caches()
async def fast_similarity_search(self, query: List[float], k: int = 5):
# Sub-millisecond similarity search
indices = self.vector_index.get_nns_by_vector(query, k)
return await self.hydrate_results(indices)
```
This document provides the correct Python implementations for all the code examples in the design document.