Skip to main content
Glama
python-code-updates.md7.66 kB
# Python Code Updates for Design Document **Last Updated: 2025-06-30** ## Database Client Examples ### ChromaDB (Vector Database) ```python # Embedded, lightweight, perfect for local MCP server import chromadb client = chromadb.Client() # or with persistence client = chromadb.PersistentClient(path="./expert-system/vector-db") # Benefits: # - Embedded (no separate server) # - Python & JS clients # - Built-in persistence # - Simple API ``` ### Weaviate (For Advanced Features) ```python # More features but requires Docker import weaviate client = weaviate.Client( url="http://localhost:8080", ) # Benefits: # - Hybrid search (vector + keyword) # - GraphQL API # - Schema enforcement # - More scalable ``` ### Qdrant (For Performance) ```python # High performance, Rust-based from qdrant_client import QdrantClient client = QdrantClient( host="localhost", port=6333, ) # Benefits: # - Extremely fast # - Low memory footprint # - Advanced filtering # - Rust performance ``` ### Neo4j (Graph Database) ```python # Most mature graph database from neo4j import GraphDatabase driver = GraphDatabase.driver( "bolt://localhost:7687", auth=("neo4j", "password") ) # Benefits: # - Cypher query language # - ACID compliance # - Rich relationship modeling # - Large ecosystem ``` ### ArangoDB (For Flexibility) ```python # Multi-model: Document, Graph, Key-Value from arango import ArangoClient client = ArangoClient(hosts='http://localhost:8529') db = client.db('_system', username='root', password='password') # Benefits: # - Multi-model database # - AQL query language # - Horizontal scaling # - Python friendly ``` ### DuckDB (For Embedded Analytics) ```python # Embedded analytical database import duckdb conn = duckdb.connect(':memory:') # Install and load graph extension conn.execute('INSTALL graph') conn.execute('LOAD graph') # Benefits: # - Fully embedded # - No separate server # - SQL with graph extensions # - Excellent performance ``` ## Data Models (Pydantic) ### Vector Embeddings Model ```python from pydantic import BaseModel from typing import List, Dict from datetime import datetime class ExpertEmbedding(BaseModel): expert_id: str embeddings: Dict[str, List[float]] = { "description": [], # 384-dim from all-MiniLM-L6-v2 "domains": [], # Domain-specific embeddings "technologies": [], # Technology stack embeddings "patterns": [], # Code pattern embeddings "constraints": [] # Constraint embeddings } metadata: Dict[str, any] = { "model": "all-MiniLM-L6-v2", "timestamp": datetime.now(), "version": "1.0.0" } class TaskEmbedding(BaseModel): task_id: str embedding: List[float] # Task description embedding context: Dict[str, List[str]] = { "technologies": [], "codebase_features": [], "requirements": [] } ``` ## Discovery Classes ### Semantic Search with Vector DB ```python from typing import List, Optional import chromadb from sentence_transformers import SentenceTransformer class SemanticExpertDiscovery: def __init__(self): self.vector_db = chromadb.Client() self.embedder = SentenceTransformer('all-MiniLM-L6-v2') async def discover_experts(self, task_description: str, limit: int = 5): # 1. Generate task embedding task_embedding = self.embedder.encode(task_description) # 2. Search across multiple embedding spaces results = [] # Search by description similarity desc_results = self.vector_db.collection('expert-descriptions').query( query_embeddings=[task_embedding], n_results=limit * 2 ) results.append(desc_results) # Search by pattern matching pattern_results = self.vector_db.collection('expert-patterns').query( query_embeddings=[task_embedding], n_results=limit ) results.append(pattern_results) # 3. Combine and rank results return self.rank_results(results) ``` ### Graph-Based Discovery ```python from neo4j import AsyncGraphDatabase class GraphExpertDiscovery: def __init__(self, uri: str, auth: tuple): self.driver = AsyncGraphDatabase.driver(uri, auth=auth) async def discover_expert_network(self, task_requirements: List[str]): # 1. Find experts through technology relationships query = """ MATCH (t:Technology) WHERE t.name IN $technologies MATCH (e:Expert)-[:SPECIALIZES_IN]->(t) OPTIONAL MATCH (e)-[:SUCCEEDED_WITH]->(task:Task) WHERE task.type = $task_type WITH e, count(DISTINCT t) as tech_matches, count(task) as success_count ORDER BY tech_matches DESC, success_count DESC LIMIT $limit RETURN e, tech_matches, success_count """ async with self.driver.session() as session: result = await session.run(query, { "technologies": task_requirements, "task_type": "refactoring", "limit": 5 }) return await self.process_graph_results(result) ``` ### Hybrid Search Strategy ```python from cachetools import LRUCache from typing import Dict, Any class HybridExpertDiscovery: def __init__(self, semantic_engine, graph_engine): self.semantic = semantic_engine self.graph = graph_engine self.cache = LRUCache(maxsize=100) async def discover(self, context: Dict[str, Any]) -> List[Dict[str, Any]]: cache_key = self.get_cache_key(context) if cache_key in self.cache: return self.cache[cache_key] # 1. Parallel discovery across both systems semantic_results = await self.semantic.discover_experts( context['description'] ) graph_results = await self.graph.discover_expert_network( context['technologies'] ) # 2. Merge and score results merged = self.merge_results(semantic_results, graph_results) # 3. Apply collaborative filtering enhanced = await self.apply_collaborative_filtering(merged, context) # 4. Cache results self.cache[cache_key] = enhanced return enhanced ``` ## Performance Optimizations ### Optimized Discovery with Annoy ```python from annoy import AnnoyIndex from cachetools import LRUCache class OptimizedDiscovery: def __init__(self, vector_dim: int = 384): self.vector_index = AnnoyIndex(vector_dim, 'angular') self.graph_cache = LRUCache(maxsize=1000) self.precomputed_pairs = {} async def initialize(self): # Build Annoy index for ultra-fast similarity search experts = await self.get_all_experts() for i, expert in enumerate(experts): self.vector_index.add_item(i, expert.embedding) self.vector_index.build(10) # 10 trees self.vector_index.save('./expert-system/vector-index.ann') # Precompute common expert pairs await self.precompute_expert_pairs() # Warm up caches await self.warmup_caches() async def fast_similarity_search(self, query: List[float], k: int = 5): # Sub-millisecond similarity search indices = self.vector_index.get_nns_by_vector(query, k) return await self.hydrate_results(indices) ``` This document provides the correct Python implementations for all the code examples in the design document.

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/agentience/expert-registry-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server