Skip to main content
Glama
aegntic

Obsidian Elite RAG MCP Server

deepseek.py1.96 kB
""" DeepSeek provider implementation. """ import os from typing import List import logging from openai import OpenAI from dotenv import load_dotenv # Load environment variables load_dotenv() # Configure logging logger = logging.getLogger(__name__) # Initialize DeepSeek client with OpenAI-compatible interface client = OpenAI( api_key=os.environ.get("DEEPSEEK_API_KEY"), base_url="https://api.deepseek.com" ) def prompt(text: str, model: str) -> str: """ Send a prompt to DeepSeek and get a response. Args: text: The prompt text model: The model name Returns: Response string from the model """ try: logger.info(f"Sending prompt to DeepSeek model: {model}") # Create chat completion response = client.chat.completions.create( model=model, messages=[{"role": "user", "content": text}], stream=False, ) # Extract response content return response.choices[0].message.content except Exception as e: logger.error(f"Error sending prompt to DeepSeek: {e}") raise ValueError(f"Failed to get response from DeepSeek: {str(e)}") def list_models() -> List[str]: """ List available DeepSeek models. Returns: List of model names """ try: logger.info("Listing DeepSeek models") response = client.models.list() # Extract model IDs models = [model.id for model in response.data] return models except Exception as e: logger.error(f"Error listing DeepSeek models: {e}") # Return some known models if API fails logger.info("Returning hardcoded list of known DeepSeek models") return [ "deepseek-coder", "deepseek-chat", "deepseek-reasoner", "deepseek-coder-v2", "deepseek-reasoner-lite" ]

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/aegntic/aegntic-MCP'

If you have feedback or need assistance with the MCP directory API, please join our Discord server