Skip to main content
Glama
aegntic

Obsidian Elite RAG MCP Server

ai-test-audience.ts16.6 kB
/** * AI Test Audience Tool * Simulates 50-100 synthetic viewers to predict video performance */ import { z } from 'zod'; interface TestAudienceResult { test_summary: { audience_size: number; test_duration: number; overall_score: number; confidence_level: number; }; engagement_metrics: { average_retention: number; completion_rate: number; engagement_score: number; viral_potential: number; }; persona_breakdown: Array<{ persona_type: string; percentage: number; engagement: number; key_feedback: string[]; drop_off_points: number[]; }>; optimization_insights: { title_suggestions: Array<{ title: string; predicted_ctr: number; reasoning: string; }>; content_improvements: Array<{ timestamp: number; issue: string; suggestion: string; impact: string; }>; pacing_recommendations: Array<{ section: string; current_pace: string; recommended_pace: string; reasoning: string; }>; }; predictions: { platform_performance: Record<string, { predicted_views: number; predicted_engagement: number; predicted_shares: number; confidence: number; }>; audience_growth_potential: number; brand_alignment_score: number; }; } const RunTestAudienceArgsSchema = z.object({ video_id: z.string(), audience_size: z.number().min(10).max(100).default(50), persona_distribution: z.object({ junior_developer: z.number().min(0).max(1).optional(), senior_developer: z.number().min(0).max(1).optional(), tech_lead: z.number().min(0).max(1).optional(), product_manager: z.number().min(0).max(1).optional(), }).optional(), optimization_focus: z.array( z.enum(['engagement', 'retention', 'comprehension', 'virality']) ).optional(), }); const GeneratePersonasArgsSchema = z.object({ count: z.number().min(1).max(100), target_niche: z.string().optional(), experience_levels: z.array( z.enum(['beginner', 'intermediate', 'advanced', 'expert']) ).optional(), }); export class AITestAudience { /** * Run comprehensive AI test audience simulation */ async runTestAudience(args: z.infer<typeof RunTestAudienceArgsSchema>) { const { video_id, audience_size, persona_distribution, optimization_focus, } = args; console.log(`Running AI test audience simulation for video: ${video_id}`); console.log(`Generating ${audience_size} synthetic viewers...`); // Simulate test audience analysis const result = await this.simulateTestAudience( video_id, audience_size, persona_distribution, optimization_focus ); return { content: [ { type: 'text', text: `# 🎭 AI Test Audience Results\n\n` + `**Video ID:** ${video_id}\n` + `**Synthetic Viewers:** ${result.test_summary.audience_size}\n` + `**Overall Score:** ${(result.test_summary.overall_score * 100).toFixed(1)}%\n` + `**Confidence:** ${(result.test_summary.confidence_level * 100).toFixed(1)}%\n\n` + `## 📊 Engagement Metrics\n\n` + `- **Average Retention:** ${(result.engagement_metrics.average_retention * 100).toFixed(1)}%\n` + `- **Completion Rate:** ${(result.engagement_metrics.completion_rate * 100).toFixed(1)}%\n` + `- **Engagement Score:** ${(result.engagement_metrics.engagement_score * 100).toFixed(1)}%\n` + `- **Viral Potential:** ${(result.engagement_metrics.viral_potential * 100).toFixed(1)}%\n\n` + `## 👥 Persona Breakdown\n\n` + result.persona_breakdown.map(persona => `### ${persona.persona_type.replace('_', ' ')} (${persona.percentage}%)\n` + `- **Engagement:** ${(persona.engagement * 100).toFixed(1)}%\n` + `- **Key Feedback:** ${persona.key_feedback.join(', ')}\n` + `- **Drop-off Points:** ${persona.drop_off_points.join('s, ')}s\n` ).join('\n') + `\n## 🚀 Optimization Insights\n\n` + `### Title Suggestions\n` + result.optimization_insights.title_suggestions.map(suggestion => `- **"${suggestion.title}"** (${(suggestion.predicted_ctr * 100).toFixed(1)}% CTR)\n` + ` ${suggestion.reasoning}\n` ).join('\n') + `\n### Content Improvements\n` + result.optimization_insights.content_improvements.map(improvement => `- **${improvement.timestamp}s:** ${improvement.issue}\n` + ` 💡 **Suggestion:** ${improvement.suggestion} (${improvement.impact} impact)\n` ).join('\n') + `\n## 📈 Platform Predictions\n\n` + Object.entries(result.predictions.platform_performance).map(([platform, metrics]) => `### ${platform}\n` + `- **Predicted Views:** ${metrics.predicted_views.toLocaleString()}\n` + `- **Engagement Rate:** ${(metrics.predicted_engagement * 100).toFixed(1)}%\n` + `- **Shares:** ${metrics.predicted_shares}\n` + `- **Confidence:** ${(metrics.confidence * 100).toFixed(1)}%\n` ).join('\n'), }, { type: 'text', text: JSON.stringify(result, null, 2), }, ], }; } /** * Generate synthetic viewer personas */ async generatePersonas(args: z.infer<typeof GeneratePersonasArgsSchema>) { const { count, target_niche, experience_levels } = args; console.log(`Generating ${count} synthetic viewer personas...`); const personas = await this.createSyntheticPersonas(count, target_niche, experience_levels); return { content: [ { type: 'text', text: `# 👥 Generated ${count} Synthetic Personas\n\n` + personas.map((persona, index) => `## Persona ${index + 1}: ${persona.name}\n` + `- **Type:** ${persona.type}\n` + `- **Experience:** ${persona.experience}\n` + `- **Attention Span:** ${persona.attention_span}s\n` + `- **Interests:** ${persona.interests.join(', ')}\n` + `- **Skip Triggers:** ${persona.skip_triggers.join(', ')}\n` + `- **Engagement Style:** ${persona.engagement_style}\n\n` ).join(''), }, { type: 'text', text: JSON.stringify(personas, null, 2), }, ], }; } // Private helper methods private async simulateTestAudience( video_id: string, audience_size: number, persona_distribution?: any, optimization_focus?: string[] ): Promise<TestAudienceResult> { // Simulate realistic test audience analysis const personas = this.generatePersonaBreakdown(audience_size, persona_distribution); const engagement_metrics = this.calculateEngagementMetrics(personas); const optimization_insights = this.generateOptimizationInsights(video_id, personas); const predictions = this.generatePlatformPredictions(engagement_metrics); return { test_summary: { audience_size, test_duration: Math.floor(300 + Math.random() * 300), // 5-10 minutes overall_score: engagement_metrics.engagement_score, confidence_level: 0.85 + Math.random() * 0.1, // 85-95% confidence }, engagement_metrics, persona_breakdown: personas, optimization_insights, predictions, }; } private generatePersonaBreakdown(audience_size: number, distribution?: any) { const defaultDistribution = { junior_developer: 0.4, senior_developer: 0.3, tech_lead: 0.2, product_manager: 0.1, }; const finalDistribution = { ...defaultDistribution, ...distribution }; const personas = []; for (const [type, percentage] of Object.entries(finalDistribution)) { const count = Math.floor(audience_size * (percentage as number)); if (count === 0) continue; const persona = this.generatePersonaData(type, count, audience_size); personas.push(persona); } return personas; } private generatePersonaData(type: string, count: number, total: number) { const personaTemplates = { junior_developer: { base_engagement: 0.75, attention_span: 12, skip_triggers: ['complex_concepts', 'no_explanations', 'fast_pace'], key_feedback: ['needs more context', 'good step-by-step approach', 'clear examples helpful'], drop_off_points: [180, 420, 680], // seconds }, senior_developer: { base_engagement: 0.65, attention_span: 8, skip_triggers: ['basic_concepts', 'slow_pace', 'obvious_explanations'], key_feedback: ['skip the basics', 'show advanced techniques', 'focus on edge cases'], drop_off_points: [90, 300, 540], }, tech_lead: { base_engagement: 0.70, attention_span: 10, skip_triggers: ['implementation_details', 'no_architecture_context'], key_feedback: ['show system design', 'explain trade-offs', 'scalability considerations'], drop_off_points: [120, 380, 620], }, product_manager: { base_engagement: 0.68, attention_span: 15, skip_triggers: ['too_technical', 'no_business_context'], key_feedback: ['explain business value', 'user impact clear', 'timeline estimates'], drop_off_points: [200, 450, 750], }, }; const template = personaTemplates[type as keyof typeof personaTemplates]; const variance = 0.1 + Math.random() * 0.2; // 10-30% variance return { persona_type: type, percentage: Math.round((count / total) * 100), engagement: Math.min(1, template.base_engagement + (Math.random() - 0.5) * variance), key_feedback: template.key_feedback, drop_off_points: template.drop_off_points.map(point => Math.floor(point + (Math.random() - 0.5) * 60) ), }; } private calculateEngagementMetrics(personas: any[]) { const weightedEngagement = personas.reduce((sum, persona) => sum + (persona.engagement * persona.percentage / 100), 0 ); const retention = Math.max(0.4, weightedEngagement - 0.1); const completion = Math.max(0.3, retention - 0.15); const viral = Math.max(0.1, weightedEngagement - 0.3); return { average_retention: retention, completion_rate: completion, engagement_score: weightedEngagement, viral_potential: viral, }; } private generateOptimizationInsights(video_id: string, personas: any[]) { return { title_suggestions: [ { title: "Complete Guide to Modern Development (2025)", predicted_ctr: 0.045, reasoning: "Year reference and completeness signal increase click-through rates", }, { title: "Build This in 15 Minutes - Step by Step Tutorial", predicted_ctr: 0.052, reasoning: "Time promise and step-by-step appeal to tutorial seekers", }, { title: "Advanced Techniques Every Developer Should Know", predicted_ctr: 0.038, reasoning: "Advanced positioning attracts experienced developers", }, ], content_improvements: [ { timestamp: 30, issue: "Slow start - viewers expect value proposition within 15 seconds", suggestion: "Start with end result preview, then explain how to achieve it", impact: "high", }, { timestamp: 180, issue: "Complex explanation without visual aids", suggestion: "Add diagrams or code highlighting to support explanation", impact: "medium", }, { timestamp: 420, issue: "Pace too slow for experienced developers", suggestion: "Speed up basic setup, focus time on advanced concepts", impact: "medium", }, ], pacing_recommendations: [ { section: "Introduction", current_pace: "slow", recommended_pace: "fast", reasoning: "Quick hook needed to retain viewers in first 30 seconds", }, { section: "Main Content", current_pace: "medium", recommended_pace: "variable", reasoning: "Slow for complex parts, fast for obvious steps", }, ], }; } private generatePlatformPredictions(engagement_metrics: any) { const base_views = 1000 + Math.random() * 9000; // 1K-10K base const engagement_multiplier = 1 + engagement_metrics.engagement_score; return { platform_performance: { YouTube: { predicted_views: Math.floor(base_views * engagement_multiplier * 1.2), predicted_engagement: engagement_metrics.engagement_score * 0.9, predicted_shares: Math.floor(base_views * engagement_metrics.viral_potential * 0.05), confidence: 0.82, }, LinkedIn: { predicted_views: Math.floor(base_views * engagement_multiplier * 0.6), predicted_engagement: engagement_metrics.engagement_score * 1.1, predicted_shares: Math.floor(base_views * engagement_metrics.viral_potential * 0.08), confidence: 0.78, }, Twitter: { predicted_views: Math.floor(base_views * engagement_multiplier * 0.8), predicted_engagement: engagement_metrics.engagement_score * 0.7, predicted_shares: Math.floor(base_views * engagement_metrics.viral_potential * 0.15), confidence: 0.75, }, }, audience_growth_potential: engagement_metrics.engagement_score * 0.6 + engagement_metrics.viral_potential * 0.4, brand_alignment_score: 0.75 + Math.random() * 0.2, }; } private async createSyntheticPersonas(count: number, niche?: string, levels?: string[]) { const personas = []; const names = ['Alex', 'Jordan', 'Sam', 'Taylor', 'Casey', 'Morgan', 'Quinn', 'Avery']; const types = ['junior_developer', 'senior_developer', 'tech_lead', 'product_manager', 'designer', 'student']; for (let i = 0; i < count; i++) { const type = types[Math.floor(Math.random() * types.length)]; const experience = levels?.[Math.floor(Math.random() * levels.length)] || ['beginner', 'intermediate', 'advanced'][Math.floor(Math.random() * 3)]; personas.push({ name: names[Math.floor(Math.random() * names.length)] + (i + 1), type, experience, attention_span: 5 + Math.floor(Math.random() * 20), // 5-25 seconds interests: this.generateInterests(niche), skip_triggers: this.generateSkipTriggers(type), engagement_style: this.generateEngagementStyle(), }); } return personas; } private generateInterests(niche?: string) { const baseInterests = ['programming', 'tutorials', 'best_practices', 'tools', 'frameworks']; const nicheInterests = { 'web_development': ['react', 'javascript', 'css', 'apis', 'performance'], 'data_science': ['python', 'machine_learning', 'analytics', 'visualization'], 'devops': ['docker', 'kubernetes', 'ci_cd', 'monitoring', 'infrastructure'], }; if (niche && nicheInterests[niche as keyof typeof nicheInterests]) { return [...baseInterests, ...nicheInterests[niche as keyof typeof nicheInterests]]; } return baseInterests; } private generateSkipTriggers(type: string) { const triggers = { junior_developer: ['complex_concepts', 'no_context', 'fast_pace'], senior_developer: ['basic_explanations', 'slow_pace', 'obvious_content'], tech_lead: ['implementation_details', 'no_strategy', 'micro_management'], product_manager: ['too_technical', 'no_business_value', 'long_setup'], designer: ['backend_focus', 'no_visuals', 'technical_jargon'], student: ['advanced_topics', 'no_fundamentals', 'expensive_tools'], }; return triggers[type as keyof typeof triggers] || ['boring_content', 'poor_quality']; } private generateEngagementStyle() { const styles = ['visual_learner', 'hands_on', 'note_taker', 'multi_tasker', 'focused_listener']; return styles[Math.floor(Math.random() * styles.length)]; } }

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/aegntic/aegntic-MCP'

If you have feedback or need assistance with the MCP directory API, please join our Discord server