/**
* AI Test Audience Tool
* Simulates 50-100 synthetic viewers to predict video performance
*/
import { z } from 'zod';
interface TestAudienceResult {
test_summary: {
audience_size: number;
test_duration: number;
overall_score: number;
confidence_level: number;
};
engagement_metrics: {
average_retention: number;
completion_rate: number;
engagement_score: number;
viral_potential: number;
};
persona_breakdown: Array<{
persona_type: string;
percentage: number;
engagement: number;
key_feedback: string[];
drop_off_points: number[];
}>;
optimization_insights: {
title_suggestions: Array<{
title: string;
predicted_ctr: number;
reasoning: string;
}>;
content_improvements: Array<{
timestamp: number;
issue: string;
suggestion: string;
impact: string;
}>;
pacing_recommendations: Array<{
section: string;
current_pace: string;
recommended_pace: string;
reasoning: string;
}>;
};
predictions: {
platform_performance: Record<string, {
predicted_views: number;
predicted_engagement: number;
predicted_shares: number;
confidence: number;
}>;
audience_growth_potential: number;
brand_alignment_score: number;
};
}
const RunTestAudienceArgsSchema = z.object({
video_id: z.string(),
audience_size: z.number().min(10).max(100).default(50),
persona_distribution: z.object({
junior_developer: z.number().min(0).max(1).optional(),
senior_developer: z.number().min(0).max(1).optional(),
tech_lead: z.number().min(0).max(1).optional(),
product_manager: z.number().min(0).max(1).optional(),
}).optional(),
optimization_focus: z.array(
z.enum(['engagement', 'retention', 'comprehension', 'virality'])
).optional(),
});
const GeneratePersonasArgsSchema = z.object({
count: z.number().min(1).max(100),
target_niche: z.string().optional(),
experience_levels: z.array(
z.enum(['beginner', 'intermediate', 'advanced', 'expert'])
).optional(),
});
export class AITestAudience {
/**
* Run comprehensive AI test audience simulation
*/
async runTestAudience(args: z.infer<typeof RunTestAudienceArgsSchema>) {
const {
video_id,
audience_size,
persona_distribution,
optimization_focus,
} = args;
console.log(`Running AI test audience simulation for video: ${video_id}`);
console.log(`Generating ${audience_size} synthetic viewers...`);
// Simulate test audience analysis
const result = await this.simulateTestAudience(
video_id,
audience_size,
persona_distribution,
optimization_focus
);
return {
content: [
{
type: 'text',
text: `# 🎭 AI Test Audience Results\n\n` +
`**Video ID:** ${video_id}\n` +
`**Synthetic Viewers:** ${result.test_summary.audience_size}\n` +
`**Overall Score:** ${(result.test_summary.overall_score * 100).toFixed(1)}%\n` +
`**Confidence:** ${(result.test_summary.confidence_level * 100).toFixed(1)}%\n\n` +
`## 📊 Engagement Metrics\n\n` +
`- **Average Retention:** ${(result.engagement_metrics.average_retention * 100).toFixed(1)}%\n` +
`- **Completion Rate:** ${(result.engagement_metrics.completion_rate * 100).toFixed(1)}%\n` +
`- **Engagement Score:** ${(result.engagement_metrics.engagement_score * 100).toFixed(1)}%\n` +
`- **Viral Potential:** ${(result.engagement_metrics.viral_potential * 100).toFixed(1)}%\n\n` +
`## 👥 Persona Breakdown\n\n` +
result.persona_breakdown.map(persona =>
`### ${persona.persona_type.replace('_', ' ')} (${persona.percentage}%)\n` +
`- **Engagement:** ${(persona.engagement * 100).toFixed(1)}%\n` +
`- **Key Feedback:** ${persona.key_feedback.join(', ')}\n` +
`- **Drop-off Points:** ${persona.drop_off_points.join('s, ')}s\n`
).join('\n') +
`\n## 🚀 Optimization Insights\n\n` +
`### Title Suggestions\n` +
result.optimization_insights.title_suggestions.map(suggestion =>
`- **"${suggestion.title}"** (${(suggestion.predicted_ctr * 100).toFixed(1)}% CTR)\n` +
` ${suggestion.reasoning}\n`
).join('\n') +
`\n### Content Improvements\n` +
result.optimization_insights.content_improvements.map(improvement =>
`- **${improvement.timestamp}s:** ${improvement.issue}\n` +
` 💡 **Suggestion:** ${improvement.suggestion} (${improvement.impact} impact)\n`
).join('\n') +
`\n## 📈 Platform Predictions\n\n` +
Object.entries(result.predictions.platform_performance).map(([platform, metrics]) =>
`### ${platform}\n` +
`- **Predicted Views:** ${metrics.predicted_views.toLocaleString()}\n` +
`- **Engagement Rate:** ${(metrics.predicted_engagement * 100).toFixed(1)}%\n` +
`- **Shares:** ${metrics.predicted_shares}\n` +
`- **Confidence:** ${(metrics.confidence * 100).toFixed(1)}%\n`
).join('\n'),
},
{
type: 'text',
text: JSON.stringify(result, null, 2),
},
],
};
}
/**
* Generate synthetic viewer personas
*/
async generatePersonas(args: z.infer<typeof GeneratePersonasArgsSchema>) {
const { count, target_niche, experience_levels } = args;
console.log(`Generating ${count} synthetic viewer personas...`);
const personas = await this.createSyntheticPersonas(count, target_niche, experience_levels);
return {
content: [
{
type: 'text',
text: `# 👥 Generated ${count} Synthetic Personas\n\n` +
personas.map((persona, index) =>
`## Persona ${index + 1}: ${persona.name}\n` +
`- **Type:** ${persona.type}\n` +
`- **Experience:** ${persona.experience}\n` +
`- **Attention Span:** ${persona.attention_span}s\n` +
`- **Interests:** ${persona.interests.join(', ')}\n` +
`- **Skip Triggers:** ${persona.skip_triggers.join(', ')}\n` +
`- **Engagement Style:** ${persona.engagement_style}\n\n`
).join(''),
},
{
type: 'text',
text: JSON.stringify(personas, null, 2),
},
],
};
}
// Private helper methods
private async simulateTestAudience(
video_id: string,
audience_size: number,
persona_distribution?: any,
optimization_focus?: string[]
): Promise<TestAudienceResult> {
// Simulate realistic test audience analysis
const personas = this.generatePersonaBreakdown(audience_size, persona_distribution);
const engagement_metrics = this.calculateEngagementMetrics(personas);
const optimization_insights = this.generateOptimizationInsights(video_id, personas);
const predictions = this.generatePlatformPredictions(engagement_metrics);
return {
test_summary: {
audience_size,
test_duration: Math.floor(300 + Math.random() * 300), // 5-10 minutes
overall_score: engagement_metrics.engagement_score,
confidence_level: 0.85 + Math.random() * 0.1, // 85-95% confidence
},
engagement_metrics,
persona_breakdown: personas,
optimization_insights,
predictions,
};
}
private generatePersonaBreakdown(audience_size: number, distribution?: any) {
const defaultDistribution = {
junior_developer: 0.4,
senior_developer: 0.3,
tech_lead: 0.2,
product_manager: 0.1,
};
const finalDistribution = { ...defaultDistribution, ...distribution };
const personas = [];
for (const [type, percentage] of Object.entries(finalDistribution)) {
const count = Math.floor(audience_size * (percentage as number));
if (count === 0) continue;
const persona = this.generatePersonaData(type, count, audience_size);
personas.push(persona);
}
return personas;
}
private generatePersonaData(type: string, count: number, total: number) {
const personaTemplates = {
junior_developer: {
base_engagement: 0.75,
attention_span: 12,
skip_triggers: ['complex_concepts', 'no_explanations', 'fast_pace'],
key_feedback: ['needs more context', 'good step-by-step approach', 'clear examples helpful'],
drop_off_points: [180, 420, 680], // seconds
},
senior_developer: {
base_engagement: 0.65,
attention_span: 8,
skip_triggers: ['basic_concepts', 'slow_pace', 'obvious_explanations'],
key_feedback: ['skip the basics', 'show advanced techniques', 'focus on edge cases'],
drop_off_points: [90, 300, 540],
},
tech_lead: {
base_engagement: 0.70,
attention_span: 10,
skip_triggers: ['implementation_details', 'no_architecture_context'],
key_feedback: ['show system design', 'explain trade-offs', 'scalability considerations'],
drop_off_points: [120, 380, 620],
},
product_manager: {
base_engagement: 0.68,
attention_span: 15,
skip_triggers: ['too_technical', 'no_business_context'],
key_feedback: ['explain business value', 'user impact clear', 'timeline estimates'],
drop_off_points: [200, 450, 750],
},
};
const template = personaTemplates[type as keyof typeof personaTemplates];
const variance = 0.1 + Math.random() * 0.2; // 10-30% variance
return {
persona_type: type,
percentage: Math.round((count / total) * 100),
engagement: Math.min(1, template.base_engagement + (Math.random() - 0.5) * variance),
key_feedback: template.key_feedback,
drop_off_points: template.drop_off_points.map(point =>
Math.floor(point + (Math.random() - 0.5) * 60)
),
};
}
private calculateEngagementMetrics(personas: any[]) {
const weightedEngagement = personas.reduce((sum, persona) =>
sum + (persona.engagement * persona.percentage / 100), 0
);
const retention = Math.max(0.4, weightedEngagement - 0.1);
const completion = Math.max(0.3, retention - 0.15);
const viral = Math.max(0.1, weightedEngagement - 0.3);
return {
average_retention: retention,
completion_rate: completion,
engagement_score: weightedEngagement,
viral_potential: viral,
};
}
private generateOptimizationInsights(video_id: string, personas: any[]) {
return {
title_suggestions: [
{
title: "Complete Guide to Modern Development (2025)",
predicted_ctr: 0.045,
reasoning: "Year reference and completeness signal increase click-through rates",
},
{
title: "Build This in 15 Minutes - Step by Step Tutorial",
predicted_ctr: 0.052,
reasoning: "Time promise and step-by-step appeal to tutorial seekers",
},
{
title: "Advanced Techniques Every Developer Should Know",
predicted_ctr: 0.038,
reasoning: "Advanced positioning attracts experienced developers",
},
],
content_improvements: [
{
timestamp: 30,
issue: "Slow start - viewers expect value proposition within 15 seconds",
suggestion: "Start with end result preview, then explain how to achieve it",
impact: "high",
},
{
timestamp: 180,
issue: "Complex explanation without visual aids",
suggestion: "Add diagrams or code highlighting to support explanation",
impact: "medium",
},
{
timestamp: 420,
issue: "Pace too slow for experienced developers",
suggestion: "Speed up basic setup, focus time on advanced concepts",
impact: "medium",
},
],
pacing_recommendations: [
{
section: "Introduction",
current_pace: "slow",
recommended_pace: "fast",
reasoning: "Quick hook needed to retain viewers in first 30 seconds",
},
{
section: "Main Content",
current_pace: "medium",
recommended_pace: "variable",
reasoning: "Slow for complex parts, fast for obvious steps",
},
],
};
}
private generatePlatformPredictions(engagement_metrics: any) {
const base_views = 1000 + Math.random() * 9000; // 1K-10K base
const engagement_multiplier = 1 + engagement_metrics.engagement_score;
return {
platform_performance: {
YouTube: {
predicted_views: Math.floor(base_views * engagement_multiplier * 1.2),
predicted_engagement: engagement_metrics.engagement_score * 0.9,
predicted_shares: Math.floor(base_views * engagement_metrics.viral_potential * 0.05),
confidence: 0.82,
},
LinkedIn: {
predicted_views: Math.floor(base_views * engagement_multiplier * 0.6),
predicted_engagement: engagement_metrics.engagement_score * 1.1,
predicted_shares: Math.floor(base_views * engagement_metrics.viral_potential * 0.08),
confidence: 0.78,
},
Twitter: {
predicted_views: Math.floor(base_views * engagement_multiplier * 0.8),
predicted_engagement: engagement_metrics.engagement_score * 0.7,
predicted_shares: Math.floor(base_views * engagement_metrics.viral_potential * 0.15),
confidence: 0.75,
},
},
audience_growth_potential: engagement_metrics.engagement_score * 0.6 + engagement_metrics.viral_potential * 0.4,
brand_alignment_score: 0.75 + Math.random() * 0.2,
};
}
private async createSyntheticPersonas(count: number, niche?: string, levels?: string[]) {
const personas = [];
const names = ['Alex', 'Jordan', 'Sam', 'Taylor', 'Casey', 'Morgan', 'Quinn', 'Avery'];
const types = ['junior_developer', 'senior_developer', 'tech_lead', 'product_manager', 'designer', 'student'];
for (let i = 0; i < count; i++) {
const type = types[Math.floor(Math.random() * types.length)];
const experience = levels?.[Math.floor(Math.random() * levels.length)] ||
['beginner', 'intermediate', 'advanced'][Math.floor(Math.random() * 3)];
personas.push({
name: names[Math.floor(Math.random() * names.length)] + (i + 1),
type,
experience,
attention_span: 5 + Math.floor(Math.random() * 20), // 5-25 seconds
interests: this.generateInterests(niche),
skip_triggers: this.generateSkipTriggers(type),
engagement_style: this.generateEngagementStyle(),
});
}
return personas;
}
private generateInterests(niche?: string) {
const baseInterests = ['programming', 'tutorials', 'best_practices', 'tools', 'frameworks'];
const nicheInterests = {
'web_development': ['react', 'javascript', 'css', 'apis', 'performance'],
'data_science': ['python', 'machine_learning', 'analytics', 'visualization'],
'devops': ['docker', 'kubernetes', 'ci_cd', 'monitoring', 'infrastructure'],
};
if (niche && nicheInterests[niche as keyof typeof nicheInterests]) {
return [...baseInterests, ...nicheInterests[niche as keyof typeof nicheInterests]];
}
return baseInterests;
}
private generateSkipTriggers(type: string) {
const triggers = {
junior_developer: ['complex_concepts', 'no_context', 'fast_pace'],
senior_developer: ['basic_explanations', 'slow_pace', 'obvious_content'],
tech_lead: ['implementation_details', 'no_strategy', 'micro_management'],
product_manager: ['too_technical', 'no_business_value', 'long_setup'],
designer: ['backend_focus', 'no_visuals', 'technical_jargon'],
student: ['advanced_topics', 'no_fundamentals', 'expensive_tools'],
};
return triggers[type as keyof typeof triggers] || ['boring_content', 'poor_quality'];
}
private generateEngagementStyle() {
const styles = ['visual_learner', 'hands_on', 'note_taker', 'multi_tasker', 'focused_listener'];
return styles[Math.floor(Math.random() * styles.length)];
}
}