#!/usr/bin/env node
/**
* DailyDoco Pro MCP Server
*
* Provides Claude with the ability to:
* - Analyze projects and detect documentation opportunities
* - Control video capture and compilation
* - Run AI test audience simulations
* - Manage personal brand learning
* - Generate authentic human-like content
* - Access performance metrics and optimization insights
*/
import { Server } from '@modelcontextprotocol/sdk/server/index.js';
import { StdioServerTransport } from '@modelcontextprotocol/sdk/server/stdio.js';
import {
CallToolRequestSchema,
ErrorCode,
ListToolsRequestSchema,
McpError,
} from '@modelcontextprotocol/sdk/types.js';
import { z } from 'zod';
import { ProjectAnalyzer } from './tools/project-analyzer.js';
import { CaptureController } from './tools/capture-controller.js';
import { AITestAudience } from './tools/ai-test-audience.js';
import { PersonalBrandManager } from './tools/personal-brand.js';
import { AuthenticityEngine } from './tools/authenticity-engine.js';
import { PerformanceMonitor } from './tools/performance-monitor.js';
import { VideoCompiler } from './tools/video-compiler.js';
import { ProjectFingerprinter } from './tools/project-fingerprinter.js';
import { ModularAIEngine } from './tools/ai-models.js';
/**
* Main MCP Server class for DailyDoco Pro
*/
class DailyDocoMCPServer {
private server: Server;
private projectAnalyzer: ProjectAnalyzer;
private captureController: CaptureController;
private aiTestAudience: AITestAudience;
private brandManager: PersonalBrandManager;
private authenticityEngine: AuthenticityEngine;
private performanceMonitor: PerformanceMonitor;
private videoCompiler: VideoCompiler;
private projectFingerprinter: ProjectFingerprinter;
private aiEngine: ModularAIEngine;
constructor() {
this.server = new Server(
{
name: 'dailydoco-pro',
version: '1.0.0',
description: 'DailyDoco Pro MCP Server - Elite automated documentation platform',
}
);
// Initialize tool handlers
this.projectAnalyzer = new ProjectAnalyzer();
this.captureController = new CaptureController();
this.aiTestAudience = new AITestAudience();
this.brandManager = new PersonalBrandManager();
this.authenticityEngine = new AuthenticityEngine();
this.performanceMonitor = new PerformanceMonitor();
this.videoCompiler = new VideoCompiler();
this.projectFingerprinter = new ProjectFingerprinter();
this.aiEngine = new ModularAIEngine();
this.setupHandlers();
}
private setupHandlers(): void {
// List available tools
this.server.setRequestHandler(ListToolsRequestSchema, async () => {
return {
tools: [
// Project Analysis Tools
{
name: 'analyze_project',
description: 'Analyze a project structure and identify documentation opportunities with 99%+ accuracy',
inputSchema: {
type: 'object',
properties: {
path: {
type: 'string',
description: 'Path to the project directory',
},
include_git_analysis: {
type: 'boolean',
description: 'Include Git history analysis',
default: true,
},
detect_complexity: {
type: 'boolean',
description: 'Analyze code complexity and suggest documentation priority',
default: true,
},
},
required: ['path'],
},
},
{
name: 'fingerprint_project',
description: 'Generate unique project fingerprint with technology stack detection',
inputSchema: {
type: 'object',
properties: {
path: { type: 'string', description: 'Project path' },
deep_analysis: { type: 'boolean', default: false },
},
required: ['path'],
},
},
// Capture Control Tools
{
name: 'start_capture',
description: 'Start intelligent video capture with predictive moment detection',
inputSchema: {
type: 'object',
properties: {
project_path: { type: 'string', description: 'Project to document' },
quality: {
type: 'string',
enum: ['720p', '1080p', '1440p', '4K'],
default: '1080p',
},
capture_audio: { type: 'boolean', default: true },
ai_optimization: { type: 'boolean', default: true },
privacy_filters: { type: 'boolean', default: true },
},
required: ['project_path'],
},
},
{
name: 'stop_capture',
description: 'Stop video capture and begin processing',
inputSchema: {
type: 'object',
properties: {
auto_compile: { type: 'boolean', default: true },
run_test_audience: { type: 'boolean', default: true },
},
},
},
{
name: 'get_capture_status',
description: 'Get real-time capture status and metrics',
inputSchema: { type: 'object', properties: {} },
},
// AI Test Audience Tools
{
name: 'run_test_audience',
description: 'Run AI test audience simulation with 50-100 synthetic viewers',
inputSchema: {
type: 'object',
properties: {
video_id: { type: 'string', description: 'Video to test' },
audience_size: {
type: 'number',
minimum: 10,
maximum: 100,
default: 50,
},
persona_distribution: {
type: 'object',
properties: {
junior_developer: { type: 'number', minimum: 0, maximum: 1 },
senior_developer: { type: 'number', minimum: 0, maximum: 1 },
tech_lead: { type: 'number', minimum: 0, maximum: 1 },
product_manager: { type: 'number', minimum: 0, maximum: 1 },
},
},
optimization_focus: {
type: 'array',
items: {
type: 'string',
enum: ['engagement', 'retention', 'comprehension', 'virality'],
},
},
},
required: ['video_id'],
},
},
{
name: 'generate_personas',
description: 'Generate synthetic viewer personas for testing',
inputSchema: {
type: 'object',
properties: {
count: { type: 'number', minimum: 1, maximum: 100 },
target_niche: { type: 'string' },
experience_levels: {
type: 'array',
items: { type: 'string', enum: ['beginner', 'intermediate', 'advanced', 'expert'] },
},
},
required: ['count'],
},
},
// Personal Brand Learning Tools
{
name: 'analyze_brand_performance',
description: 'Analyze personal brand evolution and performance metrics',
inputSchema: {
type: 'object',
properties: {
user_id: { type: 'string' },
time_period: { type: 'string', enum: ['week', 'month', 'quarter', 'year'] },
include_predictions: { type: 'boolean', default: true },
competitive_analysis: { type: 'boolean', default: false },
},
required: ['user_id'],
},
},
{
name: 'get_brand_recommendations',
description: 'Get AI-powered brand optimization recommendations',
inputSchema: {
type: 'object',
properties: {
user_id: { type: 'string' },
focus_areas: {
type: 'array',
items: { type: 'string', enum: ['content', 'audience', 'platform', 'growth'] },
},
},
required: ['user_id'],
},
},
{
name: 'learn_from_performance',
description: 'Update personal brand model with new performance data',
inputSchema: {
type: 'object',
properties: {
user_id: { type: 'string' },
video_id: { type: 'string' },
real_metrics: { type: 'object' },
platform: { type: 'string' },
},
required: ['user_id', 'video_id', 'real_metrics'],
},
},
// Authenticity Engine Tools
{
name: 'validate_authenticity',
description: 'Validate content authenticity and AI detection resistance (95%+ target)',
inputSchema: {
type: 'object',
properties: {
content_id: { type: 'string' },
content_type: { type: 'string', enum: ['video', 'audio', 'text'] },
detection_tests: {
type: 'array',
items: { type: 'string', enum: ['gpt_zero', 'originality_ai', 'platform_detection'] },
},
},
required: ['content_id', 'content_type'],
},
},
{
name: 'apply_human_fingerprint',
description: 'Apply human authenticity enhancements to content',
inputSchema: {
type: 'object',
properties: {
content_id: { type: 'string' },
fingerprint_level: {
type: 'string',
enum: ['minimal', 'moderate', 'high', 'maximum'],
default: 'high',
},
components: {
type: 'array',
items: {
type: 'string',
enum: ['speech_patterns', 'mouse_behavior', 'typing_patterns', 'error_injection'],
},
},
},
required: ['content_id'],
},
},
// Video Compilation Tools
{
name: 'compile_video',
description: 'Compile video with AI optimization and professional quality',
inputSchema: {
type: 'object',
properties: {
capture_session_id: { type: 'string' },
template: {
type: 'string',
enum: ['quick_demo', 'tutorial', 'deep_dive', 'bug_fix', 'custom'],
default: 'tutorial',
},
ai_narration: { type: 'boolean', default: true },
personal_branding: { type: 'boolean', default: true },
quality_preset: {
type: 'string',
enum: ['draft', 'standard', 'high', 'broadcast'],
default: 'high',
},
target_duration: { type: 'number', description: 'Target duration in seconds' },
},
required: ['capture_session_id'],
},
},
{
name: 'get_compilation_status',
description: 'Get video compilation progress and status',
inputSchema: {
type: 'object',
properties: {
compilation_id: { type: 'string' },
},
required: ['compilation_id'],
},
},
// Performance Monitoring Tools
{
name: 'get_system_metrics',
description: 'Get real-time system performance metrics',
inputSchema: {
type: 'object',
properties: {
include_ai_metrics: { type: 'boolean', default: true },
include_capture_metrics: { type: 'boolean', default: true },
time_range: { type: 'string', enum: ['1m', '5m', '15m', '1h'], default: '5m' },
},
},
},
{
name: 'run_performance_benchmark',
description: 'Run comprehensive performance benchmark',
inputSchema: {
type: 'object',
properties: {
benchmark_type: {
type: 'string',
enum: ['capture', 'ai', 'video_processing', 'full_system'],
default: 'full_system',
},
duration: { type: 'number', default: 60, description: 'Duration in seconds' },
},
},
},
// Utility Tools
{
name: 'get_project_insights',
description: 'Get AI-powered insights about documentation opportunities',
inputSchema: {
type: 'object',
properties: {
project_path: { type: 'string' },
analysis_depth: { type: 'string', enum: ['quick', 'standard', 'deep'], default: 'standard' },
},
required: ['project_path'],
},
},
{
name: 'optimize_workflow',
description: 'Get workflow optimization suggestions based on usage patterns',
inputSchema: {
type: 'object',
properties: {
user_id: { type: 'string' },
workflow_type: { type: 'string', enum: ['documentation', 'tutorial', 'demo'] },
},
required: ['user_id'],
},
},
],
};
});
// Handle tool calls
this.server.setRequestHandler(CallToolRequestSchema, async (request) => {
const { name, arguments: args } = request.params;
try {
switch (name) {
// Project Analysis
case 'analyze_project':
return await this.projectAnalyzer.analyzeProject(args as any);
case 'fingerprint_project':
return await this.projectFingerprinter.fingerprintProject(args as any);
// Capture Control
case 'start_capture':
return await this.captureController.startCapture(args as any);
case 'stop_capture':
return await this.captureController.stopCapture(args as any);
case 'get_capture_status':
return await this.captureController.getCaptureStatus();
// AI Test Audience
case 'run_test_audience':
return await this.aiTestAudience.runTestAudience(args as any);
case 'generate_personas':
return await this.aiTestAudience.generatePersonas(args as any);
// Personal Brand Learning
case 'analyze_brand_performance':
return await this.brandManager.analyzeBrandPerformance(args as any);
case 'get_brand_recommendations':
return await this.brandManager.getBrandRecommendations(args as any);
case 'learn_from_performance':
return await this.brandManager.learnFromPerformance(args as any);
// Authenticity Engine
case 'validate_authenticity':
return await this.authenticityEngine.validateAuthenticity(args as any);
case 'apply_human_fingerprint':
return await this.authenticityEngine.applyHumanFingerprint(args as any);
// Video Compilation
case 'compile_video':
return await this.videoCompiler.compileVideo(args as any);
case 'get_compilation_status':
return await this.videoCompiler.getCompilationStatus(args as any);
// Performance Monitoring
case 'get_system_metrics':
return await this.performanceMonitor.getSystemMetrics(args as any);
case 'run_performance_benchmark':
return await this.performanceMonitor.runBenchmark(args as any);
// Utility Tools
case 'get_project_insights':
return await this.projectAnalyzer.getProjectInsights(args as any);
case 'optimize_workflow':
return await this.brandManager.optimizeWorkflow(args as any);
default:
throw new McpError(
ErrorCode.MethodNotFound,
`Tool not found: ${name}`
);
}
} catch (error) {
console.error(`Error executing tool ${name}:`, error);
throw new McpError(
ErrorCode.InternalError,
`Failed to execute tool: ${error instanceof Error ? error.message : String(error)}`
);
}
});
// Error handling
this.server.onerror = (error) => {
console.error('[MCP Error]', error);
};
process.on('SIGINT', async () => {
console.log('Shutting down DailyDoco Pro MCP Server...');
await this.shutdown();
process.exit(0);
});
}
/**
* Start the MCP server
*/
async start(): Promise<void> {
console.log('Starting DailyDoco Pro MCP Server...');
console.log('Version: 1.0.0');
console.log('Features: AI Test Audience, Personal Brand Learning, Modular AI Architecture');
const transport = new StdioServerTransport();
await this.server.connect(transport);
console.log('DailyDoco Pro MCP Server is running and ready to serve Claude!');
}
/**
* Shutdown the server gracefully
*/
async shutdown(): Promise<void> {
console.log('Shutting down MCP server...');
// Cleanup resources
await Promise.all([
this.captureController.cleanup?.(),
this.performanceMonitor.cleanup?.(),
this.videoCompiler.cleanup?.(),
].filter(Boolean));
console.log('MCP server shutdown complete');
}
}
/**
* Main entry point
*/
async function main(): Promise<void> {
const server = new DailyDocoMCPServer();
await server.start();
}
// Start the server
if (import.meta.url === `file://${process.argv[1]}`) {
main().catch((error) => {
console.error('Failed to start DailyDoco Pro MCP Server:', error);
process.exit(1);
});
}