README.md•8.94 kB
# VTION E-Commerce MCP Server
A Model Context Protocol (MCP) server providing secure, read-only access to VTION e-commerce analytics data. Built with FastAPI and PostgreSQL, supporting both MCP native protocol and REST API.
## Features
- **MCP Protocol Support**: Full implementation of Model Context Protocol for AI agent integration
- **Multiple Transport Modes**:
- FastMCP (stdio) for direct MCP client integration
- HTTP/SSE for web-based clients
- REST API for traditional HTTP clients
- **Secure by Design**: Read-only access, query validation, connection pooling
- **Progressive Context Loading**: Efficient data discovery with 4 context levels
- **Parallel Query Execution**: Multiple queries execute concurrently for optimal performance
- **Auto-limiting**: Raw queries limited to 5 rows, aggregated queries to 1,000 rows
- **Rich Query Tools**: Schema inspection, sample data, flexible querying
## Architecture
```
VTION-ECOM/
├── vtion_ecom_mcp.py # Main MCP server with FastMCP
├── server.py # Standalone HTTP/SSE server
├── requirements.txt # Python dependencies
├── .env.example # Configuration template
├── .gitignore # Git ignore rules
└── README.md # This file
```
## Quick Start
### 1. Installation
```bash
# Clone the repository
git clone <your-repo-url>
cd VTION-ECOM
# Install dependencies
pip install -r requirements.txt
```
### 2. Configuration
```bash
# Copy environment template
cp .env.example .env
# Edit .env with your database credentials
nano .env
```
**Required Environment Variables:**
```env
DATASET_1_NAME=vtion_ecom
DATASET_1_DESC=VTION E-commerce platform analytics data
DATASET_1_CONNECTION=postgresql://postgres:PASSWORD@host:port/db?sslmode=require
DATASET_1_DICTIONARY={"table1":"desc","table2":"desc"}
```
### 3. Run the Server
**Option A: FastMCP Mode (for MCP clients)**
```bash
python vtion_ecom_mcp.py
```
**Option B: HTTP/SSE Mode (for web clients)**
```bash
python server.py
# Server runs on http://localhost:10000
```
**Option C: Production Deployment**
```bash
uvicorn server:app --host 0.0.0.0 --port 10000 --workers 4
```
## Database Configuration
The MCP server connects to your Supabase PostgreSQL database. The connection string is already configured in `.env.example`:
```
postgresql://postgres:Vtion%402023%23@db.yjiotntmzaukbmgxeqvq.supabase.co:5432/postgres?sslmode=require
```
**Important**: The password is URL-encoded (`Vtion@2023#` → `Vtion%402023%23`)
### Expected Schema
The server works with any PostgreSQL schema. Common e-commerce tables include:
- `products` - Product catalog with inventory
- `orders` - Order history and transactions
- `customers` - Customer profiles and demographics
- `cart_items` - Shopping cart data
- `user_sessions` - User engagement metrics
The server will automatically discover your schema at runtime.
## Usage
### MCP Tools
The server provides 5 MCP tools:
#### 1. `get_context(level, dataset_id?)`
Progressive context loading:
- **Level 0**: Global rules and guidelines
- **Level 1**: List all datasets
- **Level 2**: Schema for specific dataset (requires dataset_id)
- **Level 3**: Full details with sample data (requires dataset_id)
```python
# Get global rules
get_context(level=0)
# List all datasets
get_context(level=1)
# Get schema for dataset 1
get_context(level=2, dataset_id=1)
# Get full details with samples
get_context(level=3, dataset_id=1)
```
#### 2. `list_available_datasets()`
List all configured datasets with metadata.
```python
list_available_datasets()
```
#### 3. `get_dataset_schema(dataset_id)`
Get complete schema for a dataset (equivalent to `get_context(level=2)`).
```python
get_dataset_schema(dataset_id=1)
```
#### 4. `query_dataset(dataset_id, query, response_format?)`
Execute SQL SELECT queries on a dataset.
```python
# Simple query
query_dataset(
dataset_id=1,
query="SELECT * FROM products WHERE category = 'Electronics' LIMIT 10"
)
# Aggregated query
query_dataset(
dataset_id=1,
query="SELECT category, COUNT(*) as count, AVG(price) as avg_price FROM products GROUP BY category"
)
# JSON response format
query_dataset(
dataset_id=1,
query="SELECT * FROM orders WHERE status = 'completed'",
response_format="json"
)
```
**Parallel Execution**: Call `query_dataset()` multiple times - they execute in parallel automatically!
```python
# These three queries execute concurrently:
query_dataset(1, "SELECT category, COUNT(*) FROM products GROUP BY category")
query_dataset(1, "SELECT status, COUNT(*) FROM orders GROUP BY status")
query_dataset(1, "SELECT gender, COUNT(*) FROM customers GROUP BY gender")
```
#### 5. `get_dataset_sample(dataset_id, table_name, limit?)`
Get sample rows from a specific table.
```python
get_dataset_sample(
dataset_id=1,
table_name="products",
limit=20
)
```
### REST API Endpoints
When running `server.py`, these HTTP endpoints are available:
#### Health Check
```bash
curl http://localhost:10000/
# or
curl http://localhost:10000/health
```
Response:
```json
{
"status": "ok",
"service": "VTION E-Commerce MCP Server",
"datasets": 1,
"version": "1.0",
"mcp_endpoint": "/mcp",
"mcp_protocol_version": "2025-06-18"
}
```
#### List Datasets
```bash
curl http://localhost:10000/datasets
```
#### Execute Query
```bash
curl -X POST http://localhost:10000/query \
-H "Content-Type: application/json" \
-d '{
"dataset_id": 1,
"query": "SELECT * FROM products LIMIT 5"
}'
```
### MCP Protocol Endpoint
```bash
POST /mcp
```
Implements full MCP protocol over HTTP with JSON-RPC 2.0.
## Security
### Query Restrictions
- **Only SELECT allowed**: INSERT, UPDATE, DELETE, DROP, etc. are blocked
- **Automatic limits**: Raw queries max 5 rows, aggregated queries max 1,000 rows
- **Connection pooling**: Prevents resource exhaustion
- **Timeout protection**: 60-second query timeout
### Authentication
**⚠️ Important**: This server does not include authentication. For production:
1. Add authentication middleware (JWT, API keys, OAuth)
2. Use environment-specific credentials
3. Enable database row-level security (RLS)
4. Run behind a reverse proxy (nginx, Cloudflare)
## Development
### Testing Connection
```bash
# Test database connectivity
python -c "
import asyncio
import asyncpg
async def test():
conn = await asyncpg.connect('postgresql://...')
print('Connected!')
tables = await conn.fetch('SELECT table_name FROM information_schema.tables WHERE table_schema = \\'public\\'')
print('Tables:', [t['table_name'] for t in tables])
await conn.close()
asyncio.run(test())
"
```
### Adding Multiple Datasets
Edit `.env` to add more datasets:
```env
# Dataset 1
DATASET_1_NAME=vtion_ecom
DATASET_1_CONNECTION=postgresql://...
DATASET_1_DESC=Main e-commerce data
DATASET_1_DICTIONARY={"products":"Product catalog"}
# Dataset 2
DATASET_2_NAME=analytics
DATASET_2_CONNECTION=postgresql://...
DATASET_2_DESC=Analytics warehouse
DATASET_2_DICTIONARY={"events":"User events"}
```
### Customizing Business Logic
The server inherits business logic from [indian-analytics-mcp](https://github.com/adityac7/indian-analytics-mcp):
- **Query validation**: Modify `query_dataset()` in `vtion_ecom_mcp.py`
- **Response formatting**: Update `format_markdown_table()` helper
- **Add custom tools**: Use `@mcp.tool()` decorator
- **Schema customization**: Edit `DATASET_1_DICTIONARY` in `.env`
## Deployment
### Render
1. Create new Web Service
2. Connect GitHub repository
3. Set build command: `pip install -r requirements.txt`
4. Set start command: `python server.py`
5. Add environment variables from `.env`
### Docker
```dockerfile
FROM python:3.11-slim
WORKDIR /app
COPY requirements.txt .
RUN pip install --no-cache-dir -r requirements.txt
COPY . .
ENV PORT=10000
EXPOSE 10000
CMD ["python", "server.py"]
```
```bash
docker build -t vtion-mcp .
docker run -p 10000:10000 --env-file .env vtion-mcp
```
### Railway / Fly.io
Both support automatic deployment from GitHub with environment variables.
## Troubleshooting
### Connection Issues
```bash
# Test database connection
psql "postgresql://postgres:Vtion%402023%23@db.yjiotntmzaukbmgxeqvq.supabase.co:5432/postgres?sslmode=require"
```
### No Datasets Found
Check environment variables are set:
```bash
env | grep DATASET_
```
### Query Errors
- Verify table names with `get_dataset_schema()`
- Check column names match schema
- Ensure query is valid SQL SELECT statement
### Import Errors
```bash
pip install --upgrade -r requirements.txt
```
## Credits
Based on [indian-analytics-mcp](https://github.com/adityac7/indian-analytics-mcp) by [@adityac7](https://github.com/adityac7).
## License
MIT License - see LICENSE file for details
## Support
For issues and questions:
- GitHub Issues: <your-repo-url>/issues
- Email: support@vtion.com