Skip to main content
Glama

mcp-google-sheets

google.ts6.55 kB
import { ActivepiecesError, ErrorCode } from '@activepieces/shared' import { FastifyRequest, RawServerBase, RequestGenericInterface } from 'fastify' import { AIProviderStrategy, Usage } from './types' import { calculateTokensCost, calculateWebSearchCost, getProviderConfig } from './utils' export const googleProvider: AIProviderStrategy = { extractModelId: (request: FastifyRequest<RequestGenericInterface, RawServerBase>): string | null => { // https://generativelanguage.googleapis.com/v1beta/{model=models/*}:streamGenerateContent const url = request.url const modelMatch = url.match(/\/models\/([^/:]+)/) return modelMatch ? modelMatch[1] : null }, calculateUsage: (request: FastifyRequest<RequestGenericInterface, RawServerBase>, response: Record<string, unknown>): Usage | null => { const apiResponse = response as { usageMetadata: { promptTokenCount: number candidatesTokenCount: number thoughtsTokenCount?: number promptTokensDetails: { modality: 'MODALITY_UNSPECIFIED' | 'TEXT' | 'IMAGE' | 'VIDEO' | 'AUDIO' | 'DOCUMENT' tokenCount: number }[] } candidates: { groundingMetadata?: { webSearchQueries: string[] } }[] } | { name: string, error?: Record<string, unknown> } const { provider } = request.params as { provider: string } const model = googleProvider.extractModelId(request)! const providerConfig = getProviderConfig(provider)! const languageModelConfig = providerConfig.languageModels.find((m) => m.instance.modelId === model) const videoModelConfig = providerConfig.videoModels.find((m) => m.instance.modelId === model) const imageModelConfig = providerConfig.imageModels.find((m) => m.instance.modelId === model) let cost = 0 if ('usageMetadata' in apiResponse) { const { promptTokenCount, candidatesTokenCount, promptTokensDetails, thoughtsTokenCount } = apiResponse.usageMetadata if (languageModelConfig) { switch (languageModelConfig.pricing.type) { case 'categorized': { const { input, output: outputCost } = languageModelConfig.pricing cost += calculateTokensCost(candidatesTokenCount + (thoughtsTokenCount ?? 0), outputCost) promptTokensDetails.forEach((detail) => { const inputCost = detail.modality === 'AUDIO' ? input.audio : input.default cost += calculateTokensCost(detail.tokenCount, inputCost) }) break } case 'tiered':{ const { input, output, promptThreshold } = languageModelConfig.pricing const isUnderThreshold = promptTokenCount <= promptThreshold const inputCost = isUnderThreshold ? input.underThresholdRate : input.overThresholdRate const outputCost = isUnderThreshold ? output.underThresholdRate : output.overThresholdRate cost += calculateTokensCost(promptTokenCount, inputCost) + calculateTokensCost(candidatesTokenCount + (thoughtsTokenCount ?? 0), outputCost) break } case 'flat': { cost += calculateTokensCost(promptTokenCount, languageModelConfig.pricing.input) + calculateTokensCost(candidatesTokenCount + (thoughtsTokenCount ?? 0), languageModelConfig.pricing.output) } } const webSearchCost = languageModelConfig.webSearchCost ?? 0 const webSearchCalls = apiResponse.candidates.some(candidate => candidate.groundingMetadata?.webSearchQueries?.length ?? 0 > 0) ? 1 : 0 cost += calculateWebSearchCost(webSearchCalls, webSearchCost) return { cost, model, } } if (imageModelConfig) { if (typeof imageModelConfig.pricing !== 'number' && imageModelConfig.pricing.type === 'GPTImage1') { cost += calculateTokensCost(promptTokenCount, imageModelConfig.pricing.input.image) + calculateTokensCost(candidatesTokenCount + (thoughtsTokenCount ?? 0), imageModelConfig.pricing.output) } else throw new ActivepiecesError({ code: ErrorCode.AI_MODEL_NOT_SUPPORTED, params: { provider, model, }, }) } } let videoOperationId if (videoModelConfig && request.url.includes(':predictLongRunning') && 'name' in apiResponse) { const { name } = apiResponse // models/veo-2.0-generate-001/operations/hnp64qpr7tj2\ cost = videoModelConfig.pricing.costPerSecond * videoModelConfig.minimumDurationInSeconds videoOperationId = name.split('/').pop() } return { cost, model, metadata: { videoOperationId, }, } }, isStreaming: (request: FastifyRequest<RequestGenericInterface, RawServerBase>): boolean => { const url = request.url return url.includes(':streamGenerateContent') }, isNonUsageRequest: (request: FastifyRequest<RequestGenericInterface, RawServerBase>): boolean => { return request.url.includes('/operations/') || request.url.includes('/files/') }, validateRequest: (request: FastifyRequest<RequestGenericInterface, RawServerBase>): void => { if (request.url.includes(':predictLongRunning')) { const sampleCount = (request.body as { parameters?: { sampleCount?: number } }).parameters?.sampleCount if (!sampleCount || sampleCount > 1) { throw new ActivepiecesError({ code: ErrorCode.VALIDATION, params: { message: 'Only one video can be generated at a time, make sure to set sampleCount to 1.', }, }) } } }, }

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/activepieces/activepieces'

If you have feedback or need assistance with the MCP directory API, please join our Discord server