Skip to main content
Glama

mcp-google-sheets

train-custom-classifier.ts4.21 kB
import { createAction, Property } from '@activepieces/pieces-framework'; import { HttpMethod } from '@activepieces/pieces-common'; import { JinaAICommon } from '../common'; import { jinaAiAuth } from '../../index'; export const trainCustomClassifierAction = createAction({ auth:jinaAiAuth, name: 'train_custom_classifier', displayName: 'Train Custom Classifier', description: 'Fine-tune a classifier with labeled examples for domain-specific tasks.', props: { model: Property.StaticDropdown({ displayName: 'Model', description: 'The base model to use for training.', required: true, defaultValue: 'jina-clip-v2', options: { options: [ { label: 'jina-clip-v2 - Multilingual multimodal embeddings for texts and images', value: 'jina-clip-v2', }, { label: 'jina-embeddings-v3 - Frontier multilingual embedding model with SOTA performance', value: 'jina-embeddings-v3', }, { label: 'jina-clip-v1 - Multimodal embedding models for images and English text', value: 'jina-clip-v1', }, ], }, }), access: Property.StaticDropdown({ displayName: 'Access Level', description: 'Visibility of the trained model.', required: true, defaultValue: 'private', options: { options: [ { label: 'Private', value: 'private' }, { label: 'Public', value: 'public' }, ], }, }), num_iters: Property.Number({ displayName: 'Number of Iterations', description: 'Number of training iterations to perform.', required: false, defaultValue: 10, }), training_data: Property.Array({ displayName: 'Training Data', required: true, properties:{ type:Property.StaticDropdown({ displayName:'Input Type', description:'Type of input either text or image URL.', required:true, defaultValue:'text', options:{ disabled:false, options:[ {label:'Text',value:'text'}, {label:'Image',value:'image'} ] } }), input:Property.LongText({ displayName:'Input', required:true }), label:Property.ShortText({ displayName:'Label', required:true, description:'Label to associate with input.' }) } }), }, async run(context) { const { model, access, num_iters,training_data } = context.propsValue; const { auth: apiKey } = context; let parsedTrainingData: Array<{ type: string; label: string; input: string }> = []; try { parsedTrainingData = typeof training_data === 'string' ? JSON.parse(training_data) : (training_data ?? []); } catch (error) { throw new Error( 'Invalid training data format. Must be a valid JSON array of labeled examples.' ); } if (!Array.isArray(parsedTrainingData) || parsedTrainingData.length === 0) { throw new Error( 'Training data must be a non-empty array of labeled examples, you can check an example at https://jina.ai/api-dashboard/classifier' ); } const trainingInput = parsedTrainingData.map((example) => { const { type, label, input } = example; if (!label) { throw new Error('Each training example must have a "label" field.'); } if (!input) { throw new Error( 'Each training example must include an "input" value for either text or image.' ); } return type === 'text' ? { label, text: input } : { label, image: input }; }); const requestBody = { model: model || 'jina-clip-v2', access: access || 'private', num_iters: num_iters || 10, input: trainingInput, }; const response = await JinaAICommon.makeRequest({ url: JinaAICommon.classifierTrainUrl, method: HttpMethod.POST, auth: apiKey as string, body: requestBody, }); return response; }, });

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/activepieces/activepieces'

If you have feedback or need assistance with the MCP directory API, please join our Discord server