Skip to main content
Glama

mcp-google-sheets

classify-content.ts2.7 kB
import { createAction, Property } from '@activepieces/pieces-framework'; import { HttpMethod } from '@activepieces/pieces-common'; import { JinaAICommon } from '../common'; import { jinaAiAuth } from '../../index'; export const classifyContentAction = createAction({ auth:jinaAiAuth, name: 'classify_content', displayName: 'Classify Text or Image', description: 'Assign categories to text or images using the Classifier API (zero-shot/few-shot).', props: { model: Property.StaticDropdown({ displayName: 'Model', description: 'The model to use for classification.', required: true, defaultValue: 'jina-clip-v2', options: { options: [ { label: 'jina-clip-v2 - Multilingual multimodal embeddings for texts and images', value: 'jina-clip-v2', }, { label: 'jina-embeddings-v3 - Frontier multilingual embedding model with SOTA performance', value: 'jina-embeddings-v3', }, { label: 'jina-clip-v1 - Multimodal embedding models for images and English text', value: 'jina-clip-v1', }, ], }, }), input: Property.LongText({ displayName: 'Text', description: 'Text or image URL to classify. URLs will be treated as images, other strings as text.', required: true, }), labels: Property.Array({ displayName: 'Labels', description: 'The labels to classify the content into.', required: true, }), }, async run(context) { const { model, input, labels } = context.propsValue; const { auth: apiKey } = context; if (!input || input==='') { throw new Error('Text input is required.'); } if (!labels || !Array.isArray(labels) || labels.length === 0) { throw new Error('At least one label must be provided.'); } const isUrl = !!input.trim().match(/^(https?|ftp|file|data):\/\/.+/i); const inputArray = [ isUrl?{image: input} :{ text: input } ] if (inputArray.length === 0) { throw new Error('No valid inputs provided.'); } const requestBody = { model: model || 'jina-clip-v2', input: inputArray, labels, }; const response = await JinaAICommon.makeRequest({ url: JinaAICommon.classifierUrl, method: HttpMethod.POST, auth: apiKey as string, body: requestBody, }); const result = (response as ClassifyTextResponse).data[0].prediction return { label:result }; }, }); type ClassifyTextResponse = { data:Array<{ prediction:string, score:number }> }

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/activepieces/activepieces'

If you have feedback or need assistance with the MCP directory API, please join our Discord server