Skip to main content
Glama

AWS Cost Explorer MCP Server

MIT License
80
  • Linux
  • Apple
""" AWS Cost Explorer MCP Server. This server provides MCP tools to interact with AWS Cost Explorer API. """ import os import argparse from collections import defaultdict from datetime import datetime, timedelta from typing import Any, Dict, List, Optional, Union import boto3 import pandas as pd import json from mcp.server.fastmcp import FastMCP from pydantic import BaseModel, Field from tabulate import tabulate class DaysParam(BaseModel): """Parameters for specifying the number of days to look back.""" days: int = Field( default=7, description="Number of days to look back for cost data" ) class BedrockLogsParams(BaseModel): """Parameters for retrieving Bedrock invocation logs.""" days: int = Field( default=7, description="Number of days to look back for Bedrock logs", ge=1, le=90 ) region: str = Field( default="us-east-1", description="AWS region to retrieve logs from" ) log_group_name: str = Field( description="Bedrock Log Group Name", default=os.environ.get('BEDROCK_LOG_GROUP_NAME', 'BedrockModelInvocationLogGroup') ) aws_account_id: Optional[str] = Field( description="AWS account id (if different from the current AWS account) of the account for which to get the cost data", default=None ) class EC2Params(BaseModel): """Parameters for retrieving EC2 Cost Explorer information.""" days: int = Field( default=1, description="Number of days to look back for Bedrock logs", ge=1, le=90 ) region: str = Field( default="us-east-1", description="AWS region to retrieve logs from" ) aws_account_id: Optional[str] = Field( description="AWS account id (if different from the current AWS account) of the account for which to get the cost data", default=None ) # global params # if we want to get AWS spend info from a different account we need to assume a role in that account # and while the account id would be provided by the user of this MCP server, we set the name of the role # to assume in this code through an environ variable CROSS_ACCOUNT_ROLE_NAME: str = os.environ.get('CROSS_ACCOUNT_ROLE_NAME', "BedrockCrossAccount2") def get_aws_service_boto3_client(service: str, aws_account_id: Optional[str], region_name: str, account_b_role_name: Optional[str] = CROSS_ACCOUNT_ROLE_NAME): """ Creates a boto3 client for the specified service in this current AWS account or in a different account if an account id is specified. Args: service (str): AWS service name (e.g., 'logs', 'cloudwatch') region_name (str): AWS region (e.g. 'us-east-1') aws_account_id (str): AWS account ID to access, this is the account in which the role is to be assumed account_b_role_name (str): IAM role name to assume Returns: boto3.client: Service client with assumed role credentials """ try: this_account = boto3.client('sts').get_caller_identity()['Account'] if aws_account_id is not None and this_account != aws_account_id: # the request is for a different account, we need to assume a role in that account print(f"Request is for a different account: {aws_account_id}, current account: {this_account}") # Create STS client sts_client = boto3.client('sts') current_identity = sts_client.get_caller_identity() print(f"Current identity: {current_identity}") # Define the role ARN role_arn = f"arn:aws:iam::{aws_account_id}:role/{account_b_role_name}" print(f"Attempting to assume role: {role_arn}") # Assume the role assumed_role = sts_client.assume_role( RoleArn=role_arn, RoleSessionName="CrossAccountSession" ) # Extract temporary credentials credentials = assumed_role['Credentials'] # Create client with assumed role credentials client = boto3.client( service, region_name=region_name, aws_access_key_id=credentials['AccessKeyId'], aws_secret_access_key=credentials['SecretAccessKey'], aws_session_token=credentials['SessionToken'] ) print(f"Successfully created cross-account client for {service} in account {aws_account_id}") return client else: client = boto3.client( service, region_name=region_name ) print(f"Successfully created client for {service} in the current AWS account {this_account}") return client except Exception as e: print(f"Error creating cross-account client for {service}: {e}") raise e def get_bedrock_logs(params: BedrockLogsParams) -> Optional[pd.DataFrame]: """ Retrieve Bedrock invocation logs for the last n days in a given region as a dataframe Args: params: Pydantic model containing parameters: - days: Number of days to look back (default: 7) - region: AWS region to query (default: us-east-1) Returns: pd.DataFrame: DataFrame containing the log data with columns: - timestamp: Timestamp of the invocation - region: AWS region - modelId: Bedrock model ID - userId: User ARN - inputTokens: Number of input tokens - completionTokens: Number of completion tokens - totalTokens: Total tokens used """ # Initialize CloudWatch Logs client print(f"get_bedrock_logs, params={params}") client = get_aws_service_boto3_client("logs", params.aws_account_id, params.region) # Calculate time range end_time = datetime.now() start_time = end_time - timedelta(days=params.days) # Convert to milliseconds since epoch start_time_ms = int(start_time.timestamp() * 1000) end_time_ms = int(end_time.timestamp() * 1000) filtered_logs = [] try: paginator = client.get_paginator("filter_log_events") # Parameters for the log query query_params = { "logGroupName": params.log_group_name, # Use the provided log group name "logStreamNames": [ "aws/bedrock/modelinvocations" ], # The specific log stream "startTime": start_time_ms, "endTime": end_time_ms, } # Paginate through results for page in paginator.paginate(**query_params): for event in page.get("events", []): try: # Parse the message as JSON message = json.loads(event["message"]) # Get user prompt from the input messages prompt = "" input = message.get("input", {}) input_json = input.get("inputBodyJson", {}) messages = input_json.get("messages", None) if messages: for msg in message["input"]["inputBodyJson"]["messages"]: #print(f"debug 2.2, {type(msg)}") if msg.get("role") == "user" and msg.get("content"): for content in msg["content"]: if isinstance(content, dict): if content.get("text"): prompt += content["text"] + " " else: prompt += content prompt = prompt.strip() # Extract only the required fields filtered_event = { "timestamp": message.get("timestamp"), "region": message.get("region"), "modelId": message.get("modelId"), "userId": message.get("identity", {}).get("arn"), "inputTokens": message.get("input", {}).get("inputTokenCount"), "completionTokens": message.get("output", {}).get( "outputTokenCount" ), "totalTokens": ( message.get("input", {}).get("inputTokenCount", 0) + message.get("output", {}).get("outputTokenCount", 0) ), } filtered_logs.append(filtered_event) except json.JSONDecodeError: continue # Skip non-JSON messages except KeyError: continue # Skip messages missing required fields # Create DataFrame if we have logs if filtered_logs: df = pd.DataFrame(filtered_logs) df["timestamp"] = pd.to_datetime(df["timestamp"]) return df else: print("No logs found for the specified time period.") return None except client.exceptions.ResourceNotFoundException: print( f"Log group '{params.log_group_name}' or stream 'aws/bedrock/modelinvocations' not found" ) return None except Exception as e: print(f"Error retrieving logs: {str(e)}") return None # Initialize FastMCP server mcp = FastMCP("aws_cloudwatch_logs") @mcp.prompt() def system_prompt_for_agent(aws_account_id: str = "") -> str: """ Generates a system prompt for an AWS cost analysis agent. This function creates a specialized prompt for an AI agent that analyzes AWS cloud spending. The prompt instructs the agent on how to retrieve, analyze, and present cost optimization insights for AWS accounts. Args: aws_account_id (Optional[str]): The AWS account ID to analyze. If provided, the agent will focus on this specific account. If None, the agent will function without account-specific context. Returns: str: A formatted system prompt for the AWS cost analysis agent. """ if aws_account_id == "": aws_account_id = boto3.client('sts').get_caller_identity()['Account'] account_context = f"for account {aws_account_id}" initial_line = f"You are an expert AWS cost analyst AI agent {account_context}." second_line = f"Your purpose is to help users understand and optimize their AWS cloud spending for this account." system_prompt = f""" {initial_line} {second_line} You have access to the following tools: 1. AWS Cost Explorer data retrieval 2. CloudWatch logs analysis 3. Resource tagging information 4. Billing data by account, service, and region 5. Historical spend pattern analysis When a user asks about their AWS costs: 1. First, retrieve relevant data using your tools 2. Analyze spending patterns across services, users, applications, and time periods 3. Identify: - Highest cost services and resources - Unused or underutilized resources - Spending anomalies and unexpected increases - Resources lacking proper cost allocation tags - Opportunities for reserved instances or savings plans - Potential architectural optimizations 4. Present findings in a clear, actionable format with: - Visual breakdowns of cost distribution - Specific recommendations for cost optimization - Estimated potential savings for each recommendation - Comparative analysis with previous time periods Respond to queries about specific services, accounts, or time periods with precise, data-backed insights. Always provide practical recommendations that balance cost optimization with operational requirements. """ return system_prompt @mcp.tool() def get_bedrock_daily_usage_stats(params: BedrockLogsParams) -> str: """ Get daily usage statistics with detailed breakdowns. Args: params: Parameters specifying the number of days to look back and region Returns: str: Formatted string representation of daily usage statistics """ print(f"get_bedrock_daily_usage_stats, params={params}") df = get_bedrock_logs(params) if df is None or df.empty: return "No usage data found for the specified period." # Initialize result string result_parts = [] # Add header result_parts.append(f"Bedrock Usage Statistics (Past {params.days} days - {params.region})") result_parts.append("=" * 80) # Add a date column for easier grouping df['date'] = df['timestamp'].dt.date # === REGION -> MODEL GROUPING === result_parts.append("\n=== Daily Region-wise -> Model-wise Analysis ===") # Group by date, region, model and calculate metrics region_model_stats = df.groupby(['date', 'region', 'modelId']).agg({ 'inputTokens': ['count', 'sum', 'mean', 'max', 'median'], 'completionTokens': ['sum', 'mean', 'max', 'median'], 'totalTokens': ['sum', 'mean', 'max', 'median'] }) # Flatten the column multi-index region_model_stats.columns = [f"{col[0]}_{col[1]}" for col in region_model_stats.columns] # Reset the index to get a flat dataframe flattened_stats = region_model_stats.reset_index() # Rename inputTokens_count to request_count flattened_stats = flattened_stats.rename(columns={'inputTokens_count': 'request_count'}) # Add the flattened stats to result result_parts.append(flattened_stats.to_string(index=False)) # Add summary statistics result_parts.append("\n=== Summary Statistics ===") # Total requests and tokens total_requests = flattened_stats['request_count'].sum() total_input_tokens = flattened_stats['inputTokens_sum'].sum() total_completion_tokens = flattened_stats['completionTokens_sum'].sum() total_tokens = flattened_stats['totalTokens_sum'].sum() result_parts.append(f"Total Requests: {total_requests:,}") result_parts.append(f"Total Input Tokens: {total_input_tokens:,}") result_parts.append(f"Total Completion Tokens: {total_completion_tokens:,}") result_parts.append(f"Total Tokens: {total_tokens:,}") # === REGION SUMMARY === result_parts.append("\n=== Region Summary ===") region_summary = df.groupby('region').agg({ 'inputTokens': ['count', 'sum'], 'completionTokens': ['sum'], 'totalTokens': ['sum'] }) # Flatten region summary columns region_summary.columns = [f"{col[0]}_{col[1]}" for col in region_summary.columns] region_summary = region_summary.reset_index() region_summary = region_summary.rename(columns={'inputTokens_count': 'request_count'}) result_parts.append(region_summary.to_string(index=False)) # === MODEL SUMMARY === result_parts.append("\n=== Model Summary ===") model_summary = df.groupby('modelId').agg({ 'inputTokens': ['count', 'sum'], 'completionTokens': ['sum'], 'totalTokens': ['sum'] }) # Flatten model summary columns model_summary.columns = [f"{col[0]}_{col[1]}" for col in model_summary.columns] model_summary = model_summary.reset_index() model_summary = model_summary.rename(columns={'inputTokens_count': 'request_count'}) # Format model IDs to be more readable model_summary['modelId'] = model_summary['modelId'].apply( lambda model: model.split('.')[-1] if '.' in model else model.split('/')[-1] ) result_parts.append(model_summary.to_string(index=False)) # === USER SUMMARY === if 'userId' in df.columns: result_parts.append("\n=== User Summary ===") user_summary = df.groupby('userId').agg({ 'inputTokens': ['count', 'sum'], 'completionTokens': ['sum'], 'totalTokens': ['sum'] }) # Flatten user summary columns user_summary.columns = [f"{col[0]}_{col[1]}" for col in user_summary.columns] user_summary = user_summary.reset_index() user_summary = user_summary.rename(columns={'inputTokens_count': 'request_count'}) result_parts.append(user_summary.to_string(index=False)) # === REGION -> USER -> MODEL DETAILED SUMMARY === if 'userId' in df.columns: result_parts.append("\n=== Region -> User -> Model Detailed Summary ===") region_user_model_summary = df.groupby(['region', 'userId', 'modelId']).agg({ 'inputTokens': ['count', 'sum', 'mean'], 'completionTokens': ['sum', 'mean'], 'totalTokens': ['sum', 'mean'] }) # Flatten columns region_user_model_summary.columns = [f"{col[0]}_{col[1]}" for col in region_user_model_summary.columns] region_user_model_summary = region_user_model_summary.reset_index() region_user_model_summary = region_user_model_summary.rename(columns={'inputTokens_count': 'request_count'}) # Format model IDs to be more readable region_user_model_summary['modelId'] = region_user_model_summary['modelId'].apply( lambda model: model.split('.')[-1] if '.' in model else model.split('/')[-1] ) result_parts.append(region_user_model_summary.to_string(index=False)) # Combine all parts into a single string result = "\n".join(result_parts) return result @mcp.tool() def get_bedrock_hourly_usage_stats(params: BedrockLogsParams) -> str: """ Get hourly usage statistics with detailed breakdowns. Args: params: Parameters specifying the number of days to look back and region Returns: str: Formatted string representation of hourly usage statistics """ print(f"get_bedrock_hourly_usage_stats, params={params}") df = get_bedrock_logs(params) if df is None or df.empty: return "No usage data found for the specified period." # Initialize result string result_parts = [] # Add header result_parts.append(f"Hourly Bedrock Usage Statistics (Past {params.days} days - {params.region})") result_parts.append("=" * 80) # Add date and hour columns for easier grouping df['date'] = df['timestamp'].dt.date df['hour'] = df['timestamp'].dt.hour df['datetime'] = df['timestamp'].dt.strftime('%Y-%m-%d %H:00') # === HOURLY USAGE ANALYSIS === result_parts.append("\n=== Hourly Usage Analysis ===") # Group by datetime (date + hour) hourly_stats = df.groupby('datetime').agg({ 'inputTokens': ['count', 'sum', 'mean'], 'completionTokens': ['sum', 'mean'], 'totalTokens': ['sum', 'mean'] }) # Flatten the column multi-index hourly_stats.columns = [f"{col[0]}_{col[1]}" for col in hourly_stats.columns] # Reset the index to get a flat dataframe hourly_stats = hourly_stats.reset_index() # Rename inputTokens_count to request_count hourly_stats = hourly_stats.rename(columns={'inputTokens_count': 'request_count'}) # Add the hourly stats to result result_parts.append(hourly_stats.to_string(index=False)) # === HOURLY REGION -> MODEL GROUPING === result_parts.append("\n=== Hourly Region-wise -> Model-wise Analysis ===") # Group by datetime, region, model and calculate metrics hourly_region_model_stats = df.groupby(['datetime', 'region', 'modelId']).agg({ 'inputTokens': ['count', 'sum', 'mean', 'max', 'median'], 'completionTokens': ['sum', 'mean', 'max', 'median'], 'totalTokens': ['sum', 'mean', 'max', 'median'] }) # Flatten the column multi-index hourly_region_model_stats.columns = [f"{col[0]}_{col[1]}" for col in hourly_region_model_stats.columns] # Reset the index to get a flat dataframe hourly_region_model_stats = hourly_region_model_stats.reset_index() # Rename inputTokens_count to request_count hourly_region_model_stats = hourly_region_model_stats.rename(columns={'inputTokens_count': 'request_count'}) # Format model IDs to be more readable hourly_region_model_stats['modelId'] = hourly_region_model_stats['modelId'].apply( lambda model: model.split('.')[-1] if '.' in model else model.split('/')[-1] ) # Add the hourly region-model stats to result result_parts.append(hourly_region_model_stats.to_string(index=False)) # Add summary statistics result_parts.append("\n=== Summary Statistics ===") # Total requests and tokens total_requests = hourly_stats['request_count'].sum() total_input_tokens = hourly_stats['inputTokens_sum'].sum() total_completion_tokens = hourly_stats['completionTokens_sum'].sum() total_tokens = hourly_stats['totalTokens_sum'].sum() result_parts.append(f"Total Requests: {total_requests:,}") result_parts.append(f"Total Input Tokens: {total_input_tokens:,}") result_parts.append(f"Total Completion Tokens: {total_completion_tokens:,}") result_parts.append(f"Total Tokens: {total_tokens:,}") # === REGION SUMMARY === result_parts.append("\n=== Region Summary ===") region_summary = df.groupby('region').agg({ 'inputTokens': ['count', 'sum'], 'completionTokens': ['sum'], 'totalTokens': ['sum'] }) # Flatten region summary columns region_summary.columns = [f"{col[0]}_{col[1]}" for col in region_summary.columns] region_summary = region_summary.reset_index() region_summary = region_summary.rename(columns={'inputTokens_count': 'request_count'}) result_parts.append(region_summary.to_string(index=False)) # === MODEL SUMMARY === result_parts.append("\n=== Model Summary ===") model_summary = df.groupby('modelId').agg({ 'inputTokens': ['count', 'sum'], 'completionTokens': ['sum'], 'totalTokens': ['sum'] }) # Flatten model summary columns model_summary.columns = [f"{col[0]}_{col[1]}" for col in model_summary.columns] model_summary = model_summary.reset_index() model_summary = model_summary.rename(columns={'inputTokens_count': 'request_count'}) # Format model IDs to be more readable model_summary['modelId'] = model_summary['modelId'].apply( lambda model: model.split('.')[-1] if '.' in model else model.split('/')[-1] ) result_parts.append(model_summary.to_string(index=False)) # === USER SUMMARY === if 'userId' in df.columns: result_parts.append("\n=== User Summary ===") user_summary = df.groupby('userId').agg({ 'inputTokens': ['count', 'sum'], 'completionTokens': ['sum'], 'totalTokens': ['sum'] }) # Flatten user summary columns user_summary.columns = [f"{col[0]}_{col[1]}" for col in user_summary.columns] user_summary = user_summary.reset_index() user_summary = user_summary.rename(columns={'inputTokens_count': 'request_count'}) result_parts.append(user_summary.to_string(index=False)) # === HOURLY REGION -> USER -> MODEL DETAILED SUMMARY === if 'userId' in df.columns: result_parts.append("\n=== Hourly Region -> User -> Model Detailed Summary ===") hourly_region_user_model_summary = df.groupby(['datetime', 'region', 'userId', 'modelId']).agg({ 'inputTokens': ['count', 'sum', 'mean'], 'completionTokens': ['sum', 'mean'], 'totalTokens': ['sum', 'mean'] }) # Flatten columns hourly_region_user_model_summary.columns = [f"{col[0]}_{col[1]}" for col in hourly_region_user_model_summary.columns] hourly_region_user_model_summary = hourly_region_user_model_summary.reset_index() hourly_region_user_model_summary = hourly_region_user_model_summary.rename(columns={'inputTokens_count': 'request_count'}) # Format model IDs to be more readable hourly_region_user_model_summary['modelId'] = hourly_region_user_model_summary['modelId'].apply( lambda model: model.split('.')[-1] if '.' in model else model.split('/')[-1] ) result_parts.append(hourly_region_user_model_summary.to_string(index=False)) # === HOURLY USAGE PATTERN ANALYSIS === result_parts.append("\n=== Hourly Usage Pattern Analysis ===") # Group by hour of day (ignoring date) to see hourly patterns hour_pattern = df.groupby(df['timestamp'].dt.hour).agg({ 'inputTokens': ['count', 'sum'], 'totalTokens': ['sum'] }) # Flatten hour pattern columns hour_pattern.columns = [f"{col[0]}_{col[1]}" for col in hour_pattern.columns] hour_pattern = hour_pattern.reset_index() hour_pattern = hour_pattern.rename(columns={ 'timestamp': 'hour_of_day', 'inputTokens_count': 'request_count' }) # Format the hour to be more readable hour_pattern['hour_of_day'] = hour_pattern['hour_of_day'].apply( lambda hour: f"{hour:02d}:00 - {hour:02d}:59" ) result_parts.append(hour_pattern.to_string(index=False)) # Combine all parts into a single string result = "\n".join(result_parts) return result @mcp.tool() async def get_ec2_spend_last_day(params: EC2Params) -> Dict[str, Any]: """ Retrieve EC2 spend for the last day using standard AWS Cost Explorer API. Returns: Dict[str, Any]: The raw response from the AWS Cost Explorer API, or None if an error occurs. """ print(f"get_ec2_spend_last_day, params={params}") # Initialize the Cost Explorer client ce_client = get_aws_service_boto3_client("ce", params.aws_account_id, params.region) # Calculate the time period - last day end_date = datetime.now().strftime('%Y-%m-%d') start_date = (datetime.now() - timedelta(days=1)).strftime('%Y-%m-%d') try: # Make the API call using get_cost_and_usage (standard API) response = ce_client.get_cost_and_usage( TimePeriod={ 'Start': start_date, 'End': end_date }, Granularity='DAILY', Filter={ 'Dimensions': { 'Key': 'SERVICE', 'Values': [ 'Amazon Elastic Compute Cloud - Compute' ] } }, Metrics=[ 'UnblendedCost', 'UsageQuantity' ], GroupBy=[ { 'Type': 'DIMENSION', 'Key': 'INSTANCE_TYPE' } ] ) # Process and print the results print(f"EC2 Spend from {start_date} to {end_date}:") print("-" * 50) total_cost = 0.0 if 'ResultsByTime' in response and response['ResultsByTime']: time_period_data = response['ResultsByTime'][0] if 'Groups' in time_period_data: for group in time_period_data['Groups']: instance_type = group['Keys'][0] cost = float(group['Metrics']['UnblendedCost']['Amount']) currency = group['Metrics']['UnblendedCost']['Unit'] usage = float(group['Metrics']['UsageQuantity']['Amount']) print(f"Instance Type: {instance_type}") print(f"Cost: {cost:.4f} {currency}") print(f"Usage: {usage:.2f}") print("-" * 30) total_cost += cost # If no instance-level breakdown, show total if not time_period_data.get('Groups'): if 'Total' in time_period_data: total = time_period_data['Total'] cost = float(total['UnblendedCost']['Amount']) currency = total['UnblendedCost']['Unit'] print(f"Total EC2 Cost: {cost:.4f} {currency}") else: print("No EC2 costs found for this period") else: print(f"Total EC2 Cost: {total_cost:.4f} {currency if 'currency' in locals() else 'USD'}") # Check if results are estimated if 'Estimated' in time_period_data: print(f"Note: These results are {'estimated' if time_period_data['Estimated'] else 'final'}") return response except Exception as e: print(f"Error retrieving EC2 cost data: {str(e)}") return None @mcp.tool() async def get_detailed_breakdown_by_day(params: EC2Params) -> str: #Dict[str, Any]: """ Retrieve daily spend breakdown by region, service, and instance type. Args: params: Parameters specifying the number of days to look back Returns: Dict[str, Any]: A tuple containing: - A nested dictionary with cost data organized by date, region, and service - A string containing the formatted output report or (None, error_message) if an error occurs. """ print(f"get_detailed_breakdown_by_day, params={params}") # Initialize the Cost Explorer client ce_client = get_aws_service_boto3_client("ce", params.aws_account_id, params.region) # Get the days parameter days = params.days # Calculate the time period end_date = datetime.now().strftime('%Y-%m-%d') start_date = (datetime.now() - timedelta(days=days)).strftime('%Y-%m-%d') # Initialize output buffer output_buffer = [] try: output_buffer.append(f"\nDetailed Cost Breakdown by Region, Service, and Instance Type ({days} days):") output_buffer.append("-" * 75) # First get the daily costs by region and service response = ce_client.get_cost_and_usage( TimePeriod={ 'Start': start_date, 'End': end_date }, Granularity='DAILY', Metrics=['UnblendedCost'], GroupBy=[ { 'Type': 'DIMENSION', 'Key': 'REGION' }, { 'Type': 'DIMENSION', 'Key': 'SERVICE' } ] ) # Create data structure to hold the results all_data = defaultdict(lambda: defaultdict(lambda: defaultdict(float))) # Process the results for time_data in response['ResultsByTime']: date = time_data['TimePeriod']['Start'] output_buffer.append(f"\nDate: {date}") output_buffer.append("=" * 50) if 'Groups' in time_data and time_data['Groups']: # Create data structure for this date region_services = defaultdict(lambda: defaultdict(float)) # Process groups for group in time_data['Groups']: region, service = group['Keys'] cost = float(group['Metrics']['UnblendedCost']['Amount']) currency = group['Metrics']['UnblendedCost']['Unit'] region_services[region][service] = cost all_data[date][region][service] = cost # Add the results for this date to the buffer for region in sorted(region_services.keys()): output_buffer.append(f"\nRegion: {region}") output_buffer.append("-" * 40) # Create a DataFrame for this region's services services_df = pd.DataFrame({ 'Service': list(region_services[region].keys()), 'Cost': list(region_services[region].values()) }) # Sort by cost descending services_df = services_df.sort_values('Cost', ascending=False) # Get top services by cost top_services = services_df.head(5) # Add region's services table to buffer output_buffer.append(tabulate(top_services.round(2), headers='keys', tablefmt='pretty', showindex=False)) # If there are more services, indicate the total for other services if len(services_df) > 5: other_cost = services_df.iloc[5:]['Cost'].sum() output_buffer.append(f"... and {len(services_df) - 5} more services totaling {other_cost:.2f} {currency}") # For EC2, get instance type breakdown if any(s.startswith('Amazon Elastic Compute') for s in region_services[region].keys()): try: instance_response = get_instance_type_breakdown( ce_client, date, region, 'Amazon Elastic Compute Cloud - Compute', 'INSTANCE_TYPE' ) if instance_response: output_buffer.append("\n EC2 Instance Type Breakdown:") output_buffer.append(" " + "-" * 38) # Get table with indentation instance_table = tabulate(instance_response.round(2), headers='keys', tablefmt='pretty', showindex=False) for line in instance_table.split('\n'): output_buffer.append(f" {line}") except Exception as e: output_buffer.append(f" Note: Could not retrieve EC2 instance type breakdown: {str(e)}") # For SageMaker, get instance type breakdown if any(s == 'Amazon SageMaker' for s in region_services[region].keys()): try: sagemaker_instance_response = get_instance_type_breakdown( ce_client, date, region, 'Amazon SageMaker', 'INSTANCE_TYPE' ) if sagemaker_instance_response is not None and not sagemaker_instance_response.empty: output_buffer.append("\n SageMaker Instance Type Breakdown:") output_buffer.append(" " + "-" * 38) # Get table with indentation sagemaker_table = tabulate(sagemaker_instance_response.round(2), headers='keys', tablefmt='pretty', showindex=False) for line in sagemaker_table.split('\n'): output_buffer.append(f" {line}") # Also try to get usage type breakdown for SageMaker (notebooks, endpoints, etc.) sagemaker_usage_response = get_instance_type_breakdown( ce_client, date, region, 'Amazon SageMaker', 'USAGE_TYPE' ) if sagemaker_usage_response is not None and not sagemaker_usage_response.empty: output_buffer.append("\n SageMaker Usage Type Breakdown:") output_buffer.append(" " + "-" * 38) # Get table with indentation usage_table = tabulate(sagemaker_usage_response.round(2), headers='keys', tablefmt='pretty', showindex=False) for line in usage_table.split('\n'): output_buffer.append(f" {line}") except Exception as e: output_buffer.append(f" Note: Could not retrieve SageMaker breakdown: {str(e)}") else: output_buffer.append("No data found for this date") output_buffer.append("\n" + "-" * 75) # Join the buffer into a single string formatted_output = "\n".join(output_buffer) # Return both the raw data and the formatted output #return {"data": all_data, "formatted_output": formatted_output} return formatted_output except Exception as e: error_message = f"Error retrieving detailed breakdown: {str(e)}" #return {"data": None, "formatted_output": error_message} return error_message def get_instance_type_breakdown(ce_client, date, region, service, dimension_key): """ Helper function to get instance type or usage type breakdown for a specific service. Args: ce_client: The Cost Explorer client date: The date to query region: The AWS region service: The AWS service name dimension_key: The dimension to group by (e.g., 'INSTANCE_TYPE' or 'USAGE_TYPE') Returns: DataFrame containing the breakdown or None if no data """ tomorrow = (datetime.strptime(date, '%Y-%m-%d') + timedelta(days=1)).strftime('%Y-%m-%d') instance_response = ce_client.get_cost_and_usage( TimePeriod={ 'Start': date, 'End': tomorrow }, Granularity='DAILY', Filter={ 'And': [ { 'Dimensions': { 'Key': 'REGION', 'Values': [region] } }, { 'Dimensions': { 'Key': 'SERVICE', 'Values': [service] } } ] }, Metrics=['UnblendedCost'], GroupBy=[ { 'Type': 'DIMENSION', 'Key': dimension_key } ] ) if ('ResultsByTime' in instance_response and instance_response['ResultsByTime'] and 'Groups' in instance_response['ResultsByTime'][0] and instance_response['ResultsByTime'][0]['Groups']): instance_data = instance_response['ResultsByTime'][0] instance_costs = [] for instance_group in instance_data['Groups']: type_value = instance_group['Keys'][0] cost_value = float(instance_group['Metrics']['UnblendedCost']['Amount']) # Add a better label for the dimension used column_name = 'Instance Type' if dimension_key == 'INSTANCE_TYPE' else 'Usage Type' instance_costs.append({ column_name: type_value, 'Cost': cost_value }) # Create DataFrame and sort by cost result_df = pd.DataFrame(instance_costs) if not result_df.empty: result_df = result_df.sort_values('Cost', ascending=False) return result_df return None @mcp.resource("config://app") def get_config() -> str: """Static configuration data""" return "App configuration here" def main(): # Run the server with the specified transport mcp.run(transport=os.environ.get('MCP_TRANSPORT', 'stdio')) if __name__ == "__main__": main()

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/aarora79/aws-cost-explorer-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server