Skip to main content
Glama

Pokemon-mcp

by Zenith-Mind
mcp_client_groq.py2.69 kB
from langchain_groq import ChatGroq from contextlib import asynccontextmanager from langchain_mcp_adapters.client import MultiServerMCPClient from langgraph.prebuilt import create_react_agent import asyncio import os import logging from dotenv import load_dotenv # Load environment variables from .env file load_dotenv() if os.getenv('GROQ_API_KEY'): llm = ChatGroq( model="qwen-qwq-32b", temperature=0, max_tokens=None, timeout=None, max_retries=2, ) print("Using Groq with Qwen-qwq-32b") else: print('Export GROQ_API_KEY to initialize Qwen LLM.') print('Get your API key from: https://console.groq.com/') exit(1) @asynccontextmanager async def main(): client = MultiServerMCPClient({ "pokemon_server": { "url": os.getenv("POKEMON_MCP_URL", "http://localhost:8000/sse"), "transport": "sse" } }) tools = await client.get_tools() # Filter tools to include only Pokémon-related tools # pokemon_tools = [tool for tool in tools if tool.name in [ # "get_pokemon", # "compare_pokemon", # "get_type_matchups", # "suggest_team" # ]] print("Loaded Pokémon MCP tools: " + ", ".join(tool.name for tool in tools)) agent = create_react_agent( llm, tools=tools, prompt="""You are a Pokémon expert assistant. You have access to tools that can: - Get detailed information about any Pokémon - Compare two Pokémon's attributes - Analyze type matchups and strategies - Suggest balanced team compositions Use these tools to provide comprehensive and helpful responses about Pokémon. Always use the available tools when you need information about specific Pokémon.""" ) yield agent async def invoke_agent(query): async with main() as agent: agent_response = await agent.ainvoke({"messages": query}) print("==== Final Answer ====") print(agent_response['messages'][-1].content) if __name__ == "__main__": # Example queries for different functionalities queries = [ "Tell me about Charizard", "Compare Pikachu and Raichu", "What are the best type matchups against Gyarados?", "Suggest a balanced team with a strong fire attacker and good defense", "What are Gengar's weaknesses and how can I counter them?" ] # You can change this to test different queries selected_query = queries[1] # Change index to test different queries print(f"Query: {selected_query}") asyncio.run(invoke_agent(query=selected_query))

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Zenith-Mind/pokemon-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server