"""Custom API provider implementation."""
import logging
import os
from typing import Optional
from .base import (
ModelCapabilities,
ModelResponse,
ProviderType,
RangeTemperatureConstraint,
)
from .openai_compatible import OpenAICompatibleProvider
from .openrouter_registry import OpenRouterModelRegistry
class CustomProvider(OpenAICompatibleProvider):
"""Custom API provider for local models.
Supports local inference servers like Ollama, vLLM, LM Studio,
and any OpenAI-compatible API endpoint.
"""
FRIENDLY_NAME = "Custom API"
# Model registry for managing configurations and aliases (shared with OpenRouter)
_registry: Optional[OpenRouterModelRegistry] = None
def __init__(self, api_key: str = "", base_url: str = "", **kwargs):
"""Initialize Custom provider for local/self-hosted models.
This provider supports any OpenAI-compatible API endpoint including:
- Ollama (typically no API key required)
- vLLM (may require API key)
- LM Studio (may require API key)
- Text Generation WebUI (may require API key)
- Enterprise/self-hosted APIs (typically require API key)
Args:
api_key: API key for the custom endpoint. Can be empty string for
providers that don't require authentication (like Ollama).
Falls back to CUSTOM_API_KEY environment variable if not provided.
base_url: Base URL for the custom API endpoint (e.g., 'http://localhost:11434/v1').
Falls back to CUSTOM_API_URL environment variable if not provided.
**kwargs: Additional configuration passed to parent OpenAI-compatible provider
Raises:
ValueError: If no base_url is provided via parameter or environment variable
"""
# Fall back to environment variables only if not provided
if not base_url:
base_url = os.getenv("CUSTOM_API_URL", "")
if not api_key:
api_key = os.getenv("CUSTOM_API_KEY", "")
if not base_url:
raise ValueError(
"Custom API URL must be provided via base_url parameter or CUSTOM_API_URL environment variable"
)
# For Ollama and other providers that don't require authentication,
# set a dummy API key to avoid OpenAI client header issues
if not api_key:
api_key = "dummy-key-for-unauthenticated-endpoint"
logging.debug("Using dummy API key for unauthenticated custom endpoint")
logging.info(f"Initializing Custom provider with endpoint: {base_url}")
super().__init__(api_key, base_url=base_url, **kwargs)
# Initialize model registry (shared with OpenRouter for consistent aliases)
if CustomProvider._registry is None:
CustomProvider._registry = OpenRouterModelRegistry()
# Log loaded models and aliases only on first load
models = self._registry.list_models()
aliases = self._registry.list_aliases()
logging.info(f"Custom provider loaded {len(models)} models with {len(aliases)} aliases")
def _resolve_model_name(self, model_name: str) -> str:
"""Resolve model aliases to actual model names.
For Ollama-style models, strips version tags (e.g., 'llama3.2:latest' -> 'llama3.2')
since the base model name is what's typically used in API calls.
Args:
model_name: Input model name or alias
Returns:
Resolved model name with version tags stripped if applicable
"""
# First, try to resolve through registry as-is
config = self._registry.resolve(model_name)
if config:
if config.model_name != model_name:
logging.info(f"Resolved model alias '{model_name}' to '{config.model_name}'")
return config.model_name
else:
# If not found in registry, handle version tags for local models
# Strip version tags (anything after ':') for Ollama-style models
if ":" in model_name:
base_model = model_name.split(":")[0]
logging.debug(f"Stripped version tag from '{model_name}' -> '{base_model}'")
# Try to resolve the base model through registry
base_config = self._registry.resolve(base_model)
if base_config:
logging.info(f"Resolved base model '{base_model}' to '{base_config.model_name}'")
return base_config.model_name
else:
return base_model
else:
# If not found in registry and no version tag, return as-is
logging.debug(f"Model '{model_name}' not found in registry, using as-is")
return model_name
def get_capabilities(self, model_name: str) -> ModelCapabilities:
"""Get capabilities for a custom model.
Args:
model_name: Name of the model (or alias)
Returns:
ModelCapabilities from registry or generic defaults
"""
# Try to get from registry first
capabilities = self._registry.get_capabilities(model_name)
if capabilities:
# Check if this is an OpenRouter model and apply restrictions
config = self._registry.resolve(model_name)
if config and not config.is_custom:
# This is an OpenRouter model, check restrictions
from utils.model_restrictions import get_restriction_service
restriction_service = get_restriction_service()
if not restriction_service.is_allowed(ProviderType.OPENROUTER, config.model_name, model_name):
raise ValueError(f"OpenRouter model '{model_name}' is not allowed by restriction policy.")
# Update provider type to OPENROUTER for OpenRouter models
capabilities.provider = ProviderType.OPENROUTER
else:
# Update provider type to CUSTOM for local custom models
capabilities.provider = ProviderType.CUSTOM
return capabilities
else:
# Resolve any potential aliases and create generic capabilities
resolved_name = self._resolve_model_name(model_name)
logging.debug(
f"Using generic capabilities for '{resolved_name}' via Custom API. "
"Consider adding to custom_models.json for specific capabilities."
)
# Create generic capabilities with conservative defaults
capabilities = ModelCapabilities(
provider=ProviderType.CUSTOM,
model_name=resolved_name,
friendly_name=f"{self.FRIENDLY_NAME} ({resolved_name})",
context_window=32_768, # Conservative default
max_output_tokens=32_768, # Conservative default max output
supports_extended_thinking=False, # Most custom models don't support this
supports_system_prompts=True,
supports_streaming=True,
supports_function_calling=False, # Conservative default
supports_temperature=True, # Most custom models accept temperature parameter
temperature_constraint=RangeTemperatureConstraint(0.0, 2.0, 0.7),
)
# Mark as generic for validation purposes
capabilities._is_generic = True
return capabilities
def get_provider_type(self) -> ProviderType:
"""Get the provider type."""
return ProviderType.CUSTOM
def validate_model_name(self, model_name: str) -> bool:
"""Validate if the model name is allowed.
For custom endpoints, only accept models that are explicitly intended for
local/custom usage. This provider should NOT handle OpenRouter or cloud models.
Args:
model_name: Model name to validate
Returns:
True if model is intended for custom/local endpoint
"""
# logging.debug(f"Custom provider validating model: '{model_name}'")
# Try to resolve through registry first
config = self._registry.resolve(model_name)
if config:
model_id = config.model_name
# Use explicit is_custom flag for clean validation
if config.is_custom:
logging.debug(f"... [Custom] Model '{model_name}' -> '{model_id}' validated via registry")
return True
else:
# This is a cloud/OpenRouter model - CustomProvider should NOT handle these
# Let OpenRouter provider handle them instead
# logging.debug(f"... [Custom] Model '{model_name}' -> '{model_id}' not custom (defer to OpenRouter)")
return False
# Handle version tags for unknown models (e.g., "my-model:latest")
clean_model_name = model_name
if ":" in model_name:
clean_model_name = model_name.split(":")[0]
logging.debug(f"Stripped version tag from '{model_name}' -> '{clean_model_name}'")
# Try to resolve the clean name
config = self._registry.resolve(clean_model_name)
if config:
return self.validate_model_name(clean_model_name) # Recursively validate clean name
# For unknown models (not in registry), only accept if they look like local models
# This maintains backward compatibility for custom models not yet in the registry
# Accept models with explicit local indicators in the name
if any(indicator in clean_model_name.lower() for indicator in ["local", "ollama", "vllm", "lmstudio"]):
logging.debug(f"Model '{clean_model_name}' validated via local indicators")
return True
# Accept simple model names without vendor prefix (likely local/custom models)
if "/" not in clean_model_name:
logging.debug(f"Model '{clean_model_name}' validated as potential local model (no vendor prefix)")
return True
# Reject everything else (likely cloud models not in registry)
logging.debug(f"Model '{model_name}' rejected by custom provider (appears to be cloud model)")
return False
def generate_content(
self,
prompt: str,
model_name: str,
system_prompt: Optional[str] = None,
temperature: float = 0.3,
max_output_tokens: Optional[int] = None,
**kwargs,
) -> ModelResponse:
"""Generate content using the custom API.
Args:
prompt: User prompt to send to the model
model_name: Name of the model to use
system_prompt: Optional system prompt for model behavior
temperature: Sampling temperature
max_output_tokens: Maximum tokens to generate
**kwargs: Additional provider-specific parameters
Returns:
ModelResponse with generated content and metadata
"""
# Resolve model alias to actual model name
resolved_model = self._resolve_model_name(model_name)
# Call parent method with resolved model name
return super().generate_content(
prompt=prompt,
model_name=resolved_model,
system_prompt=system_prompt,
temperature=temperature,
max_output_tokens=max_output_tokens,
**kwargs,
)
def supports_thinking_mode(self, model_name: str) -> bool:
"""Check if the model supports extended thinking mode.
Args:
model_name: Model to check
Returns:
True if model supports thinking mode, False otherwise
"""
# Check if model is in registry
config = self._registry.resolve(model_name) if self._registry else None
if config and config.is_custom:
# Trust the config from custom_models.json
return config.supports_extended_thinking
# Default to False for unknown models
return False
def get_model_configurations(self) -> dict[str, ModelCapabilities]:
"""Get model configurations from the registry.
For CustomProvider, we convert registry configurations to ModelCapabilities objects.
Returns:
Dictionary mapping model names to their ModelCapabilities objects
"""
configs = {}
if self._registry:
# Get all models from registry
for model_name in self._registry.list_models():
# Only include custom models that this provider validates
if self.validate_model_name(model_name):
config = self._registry.resolve(model_name)
if config and config.is_custom:
# Use ModelCapabilities directly from registry
configs[model_name] = config
return configs
def get_all_model_aliases(self) -> dict[str, list[str]]:
"""Get all model aliases from the registry.
Returns:
Dictionary mapping model names to their list of aliases
"""
# Since aliases are now included in the configurations,
# we can use the base class implementation
return super().get_all_model_aliases()