Skip to main content
Glama
engine.py1.33 kB
from __future__ import annotations from dataclasses import dataclass from typing import Any, Dict, Optional from .task_router import IntelligentTaskRouter from .context_manager import AdvancedContextManager @dataclass class AgenticDecision: platform: str estimated_tokens: int images_present: bool task_type: str class AutonomousWorkflowEngine: """Lightweight engine that provides routing and context hints. This scaffolding does not alter tool behavior. It computes metadata that callers can attach to responses when feature flags are enabled. """ def __init__(self) -> None: self.router = IntelligentTaskRouter() self.ctx = AdvancedContextManager() def decide(self, request_like: Dict[str, Any]) -> AgenticDecision: platform = self.router.select_platform(request_like) # Estimate tokens from messages messages = request_like.get("messages", []) estimated = self.ctx.estimate_tokens(messages) images_present = any("images" in m for m in messages if isinstance(m, dict)) task_type = self.router.classify(request_like).value return AgenticDecision( platform=platform, estimated_tokens=estimated, images_present=images_present, task_type=task_type, )

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Zazzles2908/EX_AI-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server