# Adding a New Provider
This guide explains how to add support for a new AI model provider to the EXAI MCP Server. The provider system is designed to be extensible and follows a simple pattern.
## Overview
Each provider:
- Inherits from `ModelProvider` (base class) or `OpenAICompatibleProvider` (for OpenAI-compatible APIs)
- Defines supported models using `ModelCapabilities` objects
- Implements a few core abstract methods
- Gets registered automatically via environment variables
## Choose Your Implementation Path
**Option A: Full Provider (`ModelProvider`)**
- For APIs with unique features or custom authentication
- Complete control over API calls and response handling
- Required methods: `generate_content()`, `count_tokens()`, `get_capabilities()`, `validate_model_name()`, `supports_thinking_mode()`, `get_provider_type()`
**Option B: OpenAI-Compatible (`OpenAICompatibleProvider`)**
- For APIs that follow OpenAI's chat completion format
- Only need to define: model configurations, capabilities, and validation
- Inherits all API handling automatically
⚠️ **Important**: If using aliases (like `"gpt"` → `"gpt-4"`), override `generate_content()` to resolve them before API calls.
## Step-by-Step Guide
### 1. Add Provider Type
Add your provider to `ProviderType` enum in `src/providers/base.py`:
```python
class ProviderType(Enum):
KIMI = "kimi"
GLM = "glm"
EXAMPLE = "example" # Add this
```
### 2. Create the Provider Implementation
#### Option A: Full Provider (Native Implementation)
Create `src/providers/example.py`:
```python
"""Example model provider implementation."""
import logging
from typing import Optional
from .base import ModelCapabilities, ModelProvider, ModelResponse, ProviderType, RangeTemperatureConstraint
logger = logging.getLogger(__name__)
class ExampleModelProvider(ModelProvider):
"""Example model provider implementation."""
# Define models using ModelCapabilities objects (see Kimi/GLM providers)
SUPPORTED_MODELS = {
"example-large": ModelCapabilities(
provider=ProviderType.EXAMPLE,
model_name="example-large",
friendly_name="Example Large",
context_window=100_000,
max_output_tokens=50_000,
supports_extended_thinking=False,
temperature_constraint=RangeTemperatureConstraint(0.0, 2.0, 0.7),
description="Large model for complex tasks",
aliases=["large", "big"],
),
"example-small": ModelCapabilities(
provider=ProviderType.EXAMPLE,
model_name="example-small",
friendly_name="Example Small",
context_window=32_000,
max_output_tokens=16_000,
temperature_constraint=RangeTemperatureConstraint(0.0, 2.0, 0.7),
description="Fast model for simple tasks",
aliases=["small", "fast"],
),
}
def __init__(self, api_key: str, **kwargs):
super().__init__(api_key, **kwargs)
# Initialize your API client here
def get_capabilities(self, model_name: str) -> ModelCapabilities:
resolved_name = self._resolve_model_name(model_name)
if resolved_name not in self.SUPPORTED_MODELS:
raise ValueError(f"Unsupported model: {model_name}")
# Apply restrictions if needed
from utils.model_restrictions import get_restriction_service
restriction_service = get_restriction_service()
if not restriction_service.is_allowed(ProviderType.EXAMPLE, resolved_name, model_name):
raise ValueError(f"Model '{model_name}' is not allowed.")
return self.SUPPORTED_MODELS[resolved_name]
def generate_content(self, prompt: str, model_name: str, system_prompt: Optional[str] = None,
temperature: float = 0.7, max_output_tokens: Optional[int] = None, **kwargs) -> ModelResponse:
resolved_name = self._resolve_model_name(model_name)
# Your API call logic here
# response = your_api_client.generate(...)
return ModelResponse(
content="Generated response", # From your API
usage={"input_tokens": 100, "output_tokens": 50, "total_tokens": 150},
model_name=resolved_name,
friendly_name="Example",
provider=ProviderType.EXAMPLE,
)
def count_tokens(self, text: str, model_name: str) -> int:
return len(text) // 4 # Simple estimation
def get_provider_type(self) -> ProviderType:
return ProviderType.EXAMPLE
def validate_model_name(self, model_name: str) -> bool:
resolved_name = self._resolve_model_name(model_name)
return resolved_name in self.SUPPORTED_MODELS
def supports_thinking_mode(self, model_name: str) -> bool:
capabilities = self.get_capabilities(model_name)
return capabilities.supports_extended_thinking
```
#### Option B: OpenAI-Compatible Provider (Simplified)
For OpenAI-compatible APIs:
```python
"""Example OpenAI-compatible provider."""
from typing import Optional
from .base import ModelCapabilities, ModelResponse, ProviderType, RangeTemperatureConstraint
from .openai_compatible import OpenAICompatibleProvider
class ExampleProvider(OpenAICompatibleProvider):
"""Example OpenAI-compatible provider."""
FRIENDLY_NAME = "Example"
# Define models using ModelCapabilities (consistent with other providers)
SUPPORTED_MODELS = {
"example-model-large": ModelCapabilities(
provider=ProviderType.EXAMPLE,
model_name="example-model-large",
friendly_name="Example Large",
context_window=128_000,
max_output_tokens=64_000,
temperature_constraint=RangeTemperatureConstraint(0.0, 2.0, 0.7),
aliases=["large", "big"],
),
}
def __init__(self, api_key: str, **kwargs):
kwargs.setdefault("base_url", "https://api.example.com/v1")
super().__init__(api_key, **kwargs)
def get_capabilities(self, model_name: str) -> ModelCapabilities:
resolved_name = self._resolve_model_name(model_name)
if resolved_name not in self.SUPPORTED_MODELS:
raise ValueError(f"Unsupported model: {model_name}")
return self.SUPPORTED_MODELS[resolved_name]
def get_provider_type(self) -> ProviderType:
return ProviderType.EXAMPLE
def validate_model_name(self, model_name: str) -> bool:
resolved_name = self._resolve_model_name(model_name)
return resolved_name in self.SUPPORTED_MODELS
def generate_content(self, prompt: str, model_name: str, **kwargs) -> ModelResponse:
# IMPORTANT: Resolve aliases before API call
resolved_model_name = self._resolve_model_name(model_name)
return super().generate_content(prompt=prompt, model_name=resolved_model_name, **kwargs)
```
### 3. Register Your Provider
Add environment variable mapping in `src/providers/registry.py`:
```python
# In _get_api_key_for_provider method (src/providers/registry.py):
key_mapping = {
ProviderType.KIMI: "KIMI_API_KEY",
ProviderType.GLM: "GLM_API_KEY",
ProviderType.EXAMPLE: "EXAMPLE_API_KEY", # Add this
}
```
Add to `server.py`:
1. **Import your provider**:
```python
from src.providers.example import ExampleModelProvider
```
2. **Add to `configure_providers()` function**:
```python
# Check for Example API key
example_key = os.getenv("EXAMPLE_API_KEY")
if example_key:
ModelProviderRegistry.register_provider(ProviderType.EXAMPLE, ExampleModelProvider)
logger.info("Example API key found - Example models available")
```
3. **Add to provider priority** (in `src/providers/registry.py`):
```python
PROVIDER_PRIORITY_ORDER = [
ProviderType.KIMI,
ProviderType.GLM,
ProviderType.EXAMPLE, # Add your provider here
ProviderType.CUSTOM, # Local models
ProviderType.OPENROUTER, # Catch-all (keep last)
]
```
### 4. Environment Configuration
Add to your `.env` file:
```bash
# Your provider's API key
EXAMPLE_API_KEY=your_api_key_here
# Optional: Disable specific tools
DISABLED_TOOLS=debug,tracer
```
**Note**: The `description` field in `ModelCapabilities` helps Claude choose the best model in auto mode.
### 5. Test Your Provider
Create basic tests to verify your implementation:
```python
# Test model validation
provider = ExampleModelProvider("test-key")
assert provider.validate_model_name("large") == True
assert provider.validate_model_name("unknown") == False
# Test capabilities
caps = provider.get_capabilities("large")
assert caps.context_window > 0
assert caps.provider == ProviderType.EXAMPLE
```
## Key Concepts
### Provider Priority
When a user requests a model, providers are checked in priority order:
1. **Native providers** (Kimi, GLM, Example) - handle their specific models
2. **Custom provider** - handles local/self-hosted models
3. **OpenRouter** - catch-all for everything else
### Model Validation
Your `validate_model_name()` should **only** return `True` for models you explicitly support:
```python
def validate_model_name(self, model_name: str) -> bool:
resolved_name = self._resolve_model_name(model_name)
return resolved_name in self.SUPPORTED_MODELS # Be specific!
```
### Model Aliases
The base class handles alias resolution automatically via the `aliases` field in `ModelCapabilities`.
## Important Notes
### Alias Resolution in OpenAI-Compatible Providers
If using `OpenAICompatibleProvider` with aliases, **you must override `generate_content()`** to resolve aliases before API calls:
```python
def generate_content(self, prompt: str, model_name: str, **kwargs) -> ModelResponse:
# Resolve alias before API call
resolved_model_name = self._resolve_model_name(model_name)
return super().generate_content(prompt=prompt, model_name=resolved_model_name, **kwargs)
```
Without this, API calls with aliases like `"large"` will fail because your API doesn't recognize the alias.
## Best Practices
- **Be specific in model validation** - only accept models you actually support
- **Use ModelCapabilities objects** consistently (see Kimi/GLM providers)
- **Include descriptive aliases** for better user experience
- **Add error handling** and logging for debugging
- **Test with real API calls** to verify everything works
- **Follow the existing patterns** in `src/providers/openai_compatible.py` and `src/providers/custom.py`
## Quick Checklist
- [ ] Added to `ProviderType` enum in `src/providers/base.py`
- [ ] Created provider class with all required methods
- [ ] Added API key mapping in `src/providers/registry.py`
- [ ] Added to provider priority order in `src/providers/registry.py`
- [ ] Imported and registered in `server.py`
- [ ] Basic tests verify model validation and capabilities
- [ ] Tested with real API calls
## Examples
See existing implementations:
- **Full provider**: `src/providers/kimi.py` and `src/providers/glm.py`
- **OpenAI-compatible**: `src/providers/custom.py`
- **Base classes**: `src/providers/base.py`
The modern approach uses `ModelCapabilities` objects directly in `SUPPORTED_MODELS`, making the implementation much cleaner and more consistent.