Skip to main content
Glama

search_bitable_records

Query records from Feishu Bitable tables with pagination and optional filtering to retrieve specific data entries.

Instructions

查询多维表格记录(支持分页) 参数: app_token: 多维表格的token table_id: 数据表ID page_size: 每页记录数(1-500) page_token: 分页token,首次查询为空 filter: (可选) 过滤条件 返回: 记录列表和分页信息

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
app_tokenYes
table_idYes
page_sizeNo
page_tokenNo
filterNo

Implementation Reference

  • The core handler function that implements the logic for the 'search_bitable_records' tool. It queries records from a Feishu Bitable table using the Lark API, supporting pagination and optional filters.
    @mcp.tool() @handle_feishu_error def search_bitable_records( app_token: str, table_id: str, page_size: int = 20, page_token: str = "", filter: dict = None, ) -> str: """ 查询多维表格记录(支持分页) 参数: app_token: 多维表格的token table_id: 数据表ID page_size: 每页记录数(1-500) page_token: 分页token,首次查询为空 filter: (可选) 过滤条件 返回: 记录列表和分页信息 """ client = get_client() request_builder = ( SearchAppTableRecordRequest.builder() .app_token(app_token) .table_id(table_id) .page_size(page_size) ) if page_token: request_builder.page_token(page_token) body_builder = SearchAppTableRecordRequestBody.builder() if filter: # TODO: 需要根据SDK文档正确构建filter pass request_builder.request_body(body_builder.build()) request = request_builder.build() response = client.bitable.v1.app_table_record.search(request) return lark.JSON.marshal(response.data, indent=4)
  • Registers all Bitable record tools, including 'search_bitable_records', by invoking the registration function during MCP server setup.
    # 注册多维表格工具 register_bitable_app_tools(mcp) register_bitable_record_tools(mcp)

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/ZYHB/yuppie-mcp-feishu'

If you have feedback or need assistance with the MCP directory API, please join our Discord server