Skip to main content
Glama

Terminal MCP Server

by YongpengFu
main.py1.59 kB
import asyncio import os from dotenv import load_dotenv from langchain_mcp_adapters.tools import load_mcp_tools from langchain_openai import ChatOpenAI from langchain_core.messages import HumanMessage from langgraph.prebuilt import create_react_agent from mcp import ClientSession, StdioServerParameters from mcp.client.stdio import stdio_client # Load environment variables from .env file load_dotenv() llm = ChatOpenAI(model="gpt-4o-mini", temperature=0) stdio_server_parameters = StdioServerParameters( command="uv", args=["run", "servers/math_server.py"], env=os.environ, cwd=os.path.dirname(os.path.abspath(__file__)), log_level="INFO", ) async def main(): print("Starting MCP adapter...") # Connect to the MCP server using stdio async with stdio_client(stdio_server_parameters) as (read, write): async with ClientSession(read, write) as session: await session.initialize() tools = await load_mcp_tools(session) # tools = await session.list_tools() print(tools) agent = create_react_agent(llm, tools) result = await agent.ainvoke({"messages": [HumanMessage(content="What is the capital of France?")]}) print(result["messages"][-1].content) result = await agent.ainvoke({"messages": [HumanMessage(content="What is 1 + 3* 12 + 10?")]}) print(result["messages"][-1].content) print("Connected to MCP server successfully!") print("MCP adapter completed successfully!") if __name__ == "__main__": asyncio.run(main())

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/YongpengFu/mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server