Skip to main content
Glama

Feishu MCP Server

delete.ts2.47 kB
/** * 删除评论回复工具 */ import { z } from 'zod' import { Client } from '@larksuiteoapi/node-sdk' import * as lark from '@larksuiteoapi/node-sdk' import { McpToolDescription, convertDescriptionToString } from '../../types' const replyDeleteDescription: McpToolDescription = { shortDescription: '飞书-云文档-评论-删除回复信息-根据回复ID删除该条回复', bestFor: '删除某条回复', notRecommendedFor: '删除评论', promptExample: '删除这条回复', usageExample: 'drive_reply_delete({file_token: "xxx", file_type: "docx", comment_id: "yyy", reply_id: "zzz"})', } const ReplyDeleteSchema = { file_token: z.string().describe('文档 Token'), file_type: z .enum(['doc', 'docx', 'sheet', 'file', 'slides']) .describe('云文档类型:doc(旧版文档),docx(新版文档),sheet(电子表格),file(文件夹),slides(幻灯片)'), comment_id: z.string().describe('评论 ID'), reply_id: z.string().describe('回复 ID'), } interface ReplyDeleteParams { file_token: string file_type: 'doc' | 'docx' | 'sheet' | 'file' | 'slides' comment_id: string, reply_id: string } export const driveReplyDelete = { name: 'drive_reply_delete', description: convertDescriptionToString(replyDeleteDescription), inputSchema: ReplyDeleteSchema, customHandler: async (params: ReplyDeleteParams, client?: Client, userAccessToken?: string) => { try { if (!client) { return { isError: true, content: [{ type: 'text' as const, text: 'Client not provided' }], } } const response = await client.drive.v1.fileCommentReply.delete( { path: { file_token: params.file_token, comment_id: params.comment_id, reply_id: params.reply_id, }, params: { file_type: params.file_type, }, }, userAccessToken ? lark.withUserAccessToken(userAccessToken) : undefined, ) return { content: [ { type: 'text' as const, text: JSON.stringify(response.data), }, ], } } catch (error) { console.error('删除回复失败:', error) return { isError: true, content: [ { type: 'text' as const, text: `删除回复失败: ${error instanceof Error ? error.message : '未知错误'}`, }, ], } } }, }

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Xumingmingming/feishu-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server