Skip to main content
Glama

When using AI CLIs/IDEs, agents can drift from your intent. This project gives you a simple way to intervene at key moments, review context in a Web UI, and send your latest instructions via interactive_feedback so the agent can continue on track.

Works with Cursor, VS Code, Claude Code, Augment, Windsurf, Trae, and more.

Quick start

  1. Install:

pip install ai-intervention-agent # or uv add ai-intervention-agent
  1. Configure your AI tool to launch the MCP server via uvx:

{ "mcpServers": { "ai-intervention-agent": { "command": "uvx", "args": ["ai-intervention-agent"], "timeout": 600, "autoApprove": ["interactive_feedback"] } } }
NOTE

>interactive_feedback is a long-running tool. Some clients have a hard request timeout, so the Web UI provides a countdown + auto re-submit option to keep sessions alive.

- Only ask me through the MCP `ai-intervention-agent` tool; do not ask directly in chat or ask for end-of-task confirmation in chat. - If a tool call fails, keep asking again through `ai-intervention-agent` instead of making assumptions, until the tool call succeeds. ai-intervention-agent usage details: - If requirements are unclear, use `ai-intervention-agent` to ask for clarification with predefined options. - If there are multiple approaches, use `ai-intervention-agent` to ask instead of deciding unilaterally. - If a plan/strategy needs to change, use `ai-intervention-agent` to ask instead of deciding unilaterally. - Before finishing a request, always ask for feedback via `ai-intervention-agent`. - Do not end the conversation/request unless the user explicitly allows it via `ai-intervention-agent`.

Screenshots

Key features

  • Real-time intervention: the agent pauses and waits for your input via interactive_feedback

  • Web UI: Markdown, code highlighting, and math rendering

  • Multi-task: tab switching with independent countdown timers

  • Auto re-submit: keep sessions alive by auto-submitting at timeout

  • Notifications: web / sound / system / Bark

  • SSH-friendly: great with port forwarding

VS Code extension (optional)

Item

Value

Purpose

Embed the interaction panel into VS Code’s sidebar to avoid switching to a browser.

Install (Open VSX)

Open VSX

Download VSIX (GitHub Release)

GitHub Releases

Setting

ai-intervention-agent.serverUrl (should match your Web UI URL, e.g. http://localhost:8080; you can change web_ui.port in config.jsonc.default)

Configuration

Item

Value

Docs (English)

docs/configuration.md

Docs (简体中文)

docs/configuration.zh-CN.md

Default template

config.jsonc.default (on first run it will be copied to config.jsonc)

OS

User config directory

Linux

~/.config/ai-intervention-agent/

macOS

~/Library/Application Support/ai-intervention-agent/

Windows

%APPDATA%/ai-intervention-agent/

Architecture

flowchart TD subgraph CLIENTS["AI clients"] AI_CLIENT["AI CLI / IDE<br/>(Cursor, VS Code, Claude Code, ...)"] end subgraph MCP_PROC["MCP server process"] MCP_SRV["ai-intervention-agent<br/>(server.py)"] MCP_TOOL["MCP tool<br/>interactive_feedback"] CFG_MGR["Config manager<br/>(config_manager.py)"] NOTIF_MGR["Notification manager<br/>(notification_manager.py)"] end subgraph WEB_PROC["Web UI process"] WEB_SRV["Web UI service<br/>(web_ui.py / Flask)"] HTTP_API["HTTP API<br/>(/api/*)"] TASK_Q["Task queue<br/>(task_queue.py)"] WEB_SRV --> HTTP_API WEB_SRV --> TASK_Q end subgraph USER_UI["User interfaces"] BROWSER["Browser"] VSCODE["VS Code extension<br/>(Webview)"] end CFG_FILE["config.jsonc<br/>(user config directory)"] AI_CLIENT -->|MCP call| MCP_TOOL MCP_SRV -->|exposes| MCP_TOOL MCP_TOOL -->|ensure Web UI running| WEB_SRV MCP_TOOL <-->|create task / poll result| HTTP_API BROWSER <-->|HTTP| HTTP_API VSCODE <-->|HTTP| HTTP_API CFG_MGR <-->|read/write| CFG_FILE WEB_SRV <-->|read| CFG_FILE MCP_SRV --> NOTIF_MGR NOTIF_MGR -->|web / sound / system / Bark| USER["User"]

Documentation

License

MIT License

-
security - not tested
A
license - permissive license
-
quality - not tested

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/XIADENGMA/ai-intervention-agent'

If you have feedback or need assistance with the MCP directory API, please join our Discord server