semantic.py•4.98 kB
"""
Semantic Domain for managing semantic memories.
The Semantic Domain is responsible for:
- Managing factual information and knowledge
- Organizing categorical and conceptual information
- Handling entity relationships and attributes
- Knowledge consolidation and organization
- Abstract concept representation
"""
from typing import Any, Dict, List
from loguru import logger
from memory_mcp.domains.persistence import PersistenceDomain
class SemanticDomain:
    """
    Manages semantic memories (facts, knowledge, entities).
    
    This domain handles factual information, knowledge, and
    entity-relationship structures.
    """
    
    def __init__(self, config: Dict[str, Any], persistence_domain: PersistenceDomain) -> None:
        """
        Initialize the semantic domain.
        
        Args:
            config: Configuration dictionary
            persistence_domain: Reference to the persistence domain
        """
        self.config = config
        self.persistence_domain = persistence_domain
    
    async def initialize(self) -> None:
        """Initialize the semantic domain."""
        logger.info("Initializing Semantic Domain")
        # Initialization logic will be implemented here
    
    async def process_memory(self, memory: Dict[str, Any]) -> Dict[str, Any]:
        """
        Process a semantic memory.
        
        This includes extracting key information, generating embeddings,
        and enriching the memory with additional metadata.
        
        Args:
            memory: The memory to process
            
        Returns:
            Processed memory
        """
        logger.debug(f"Processing semantic memory: {memory['id']}")
        
        # Extract text representation for embedding
        text_content = self._extract_text_content(memory)
        
        # Generate embedding
        embedding = await self.persistence_domain.generate_embedding(text_content)
        memory["embedding"] = embedding
        
        # Additional processing based on memory type
        if memory["type"] == "entity":
            memory = self._process_entity_memory(memory)
        elif memory["type"] == "fact":
            memory = self._process_fact_memory(memory)
        
        return memory
    
    def _extract_text_content(self, memory: Dict[str, Any]) -> str:
        """
        Extract text content from a memory for embedding generation.
        
        Args:
            memory: The memory to extract text from
            
        Returns:
            Text representation of the memory
        """
        if memory["type"] == "fact":
            # For fact memories, use the fact text
            if "fact" in memory["content"]:
                return memory["content"]["fact"]
        
        elif memory["type"] == "document":
            # For document memories, combine title and text
            title = memory["content"].get("title", "")
            text = memory["content"].get("text", "")
            return f"{title}\n{text}"
            
        elif memory["type"] == "entity":
            # For entity memories, combine name and attributes
            name = memory["content"].get("name", "")
            entity_type = memory["content"].get("entity_type", "")
            
            # Extract attributes as text
            attributes = memory["content"].get("attributes", {})
            attr_text = ""
            if attributes and isinstance(attributes, dict):
                attr_text = "\n".join([f"{k}: {v}" for k, v in attributes.items()])
            
            return f"{name} ({entity_type})\n{attr_text}"
        
        # Fallback: try to convert content to string
        try:
            return str(memory["content"])
        except:
            return f"Memory {memory['id']} of type {memory['type']}"
    
    def _process_entity_memory(self, memory: Dict[str, Any]) -> Dict[str, Any]:
        """
        Process an entity memory.
        
        Args:
            memory: The entity memory to process
            
        Returns:
            Processed memory
        """
        # Entity-specific processing
        # This is a placeholder for future implementation
        return memory
    
    def _process_fact_memory(self, memory: Dict[str, Any]) -> Dict[str, Any]:
        """
        Process a fact memory.
        
        Args:
            memory: The fact memory to process
            
        Returns:
            Processed memory
        """
        # Fact-specific processing
        # This is a placeholder for future implementation
        return memory
    
    async def get_stats(self) -> Dict[str, Any]:
        """
        Get statistics about the semantic domain.
        
        Returns:
            Semantic domain statistics
        """
        return {
            "memory_types": {
                "fact": 0,
                "document": 0,
                "entity": 0
            },
            "status": "initialized"
        }