Skip to main content
Glama
GETTING_STARTED_EN.mdβ€’6.31 kB
# πŸ“– 5-Minute Quick Start Guide > From zero to running your first MCP server in 5 minutes ## 🎯 Before You Start ### Environment Requirements - **Python 3.10+** (recommended 3.11+) - **Cursor IDE** (highly recommended for best AI development experience) - **Git** (for cloning the scaffold) ### Optional Tools - **Docker** (for containerized deployment) - **uv** (faster Python package manager) ## πŸš€ Step 1: Get the Scaffold ```bash # Clone scaffold to local git clone https://github.com/WW-AI-Lab/Awesome-MCP-Scaffold.git my-mcp-server cd my-mcp-server # Rename to your project # Optional: Remove .git directory and reinitialize rm -rf .git git init ``` ## πŸ”§ Step 2: Environment Setup ### Option A: Using pip (recommended for beginners) ```bash # Create virtual environment python3 -m venv .venv # Activate virtual environment source .venv/bin/activate # macOS/Linux # .venv\Scripts\activate # Windows # Install dependencies pip install --upgrade pip pip install -r requirements.txt ``` ### Option B: Using uv (faster) ```bash # Install uv (if not installed) curl -LsSf https://astral.sh/uv/install.sh | sh # Create project and install dependencies uv sync ``` ## ⚑ Step 3: Start Server ### Development Mode (stdio) ```bash # Simplest startup method python run.py # Using FastMCP CLI (recommended for development) fastmcp dev run.py ``` ### HTTP Mode (recommended) ```bash # Start HTTP server python run.py --transport streamable-http --port 8000 # Run in background python run.py --transport streamable-http --port 8000 & ``` ## βœ… Step 4: Verify Functionality ### Basic Health Check ```bash # Check server status curl http://localhost:8000/health # Expected output: # { # "status": "healthy", # "version": "1.0.0", # "app_name": "Awesome MCP Server", # "environment": "development" # } ``` ### View Server Information ```bash # Get detailed information curl http://localhost:8000/info | python -m json.tool # Expected output: # { # "name": "Awesome MCP Server", # "mcp_version": "1.10.1", # "capabilities": { # "tools": true, # "resources": true, # "prompts": true # } # } ``` ### Test Built-in Tools ```bash # View available tools curl http://localhost:8000/api/tools # Test calculator tool curl -X POST http://localhost:8000/api/tools/add \ -H "Content-Type: application/json" \ -d '{"a": 10, "b": 5}' ``` ## πŸ€– Step 5: Cursor AI Development ### 1. Open Project in Cursor ```bash # Open in Cursor cursor . # Or manually open Cursor, then open project folder ``` ### 2. Verify AI Rules Loading - Cursor will automatically recognize `.cursor/rules/` directory - Check status bar for "Rules loaded" display - If not loaded, restart Cursor ### 3. Test AI Assistant Press `Cmd/Ctrl+K` and input: ``` "Add a new tool to this MCP server for calculating the greatest common divisor of two numbers" ``` AI will automatically: 1. Create new file in `server/tools/` directory 2. Generate complete tool code 3. Add type annotations and documentation 4. Register to MCP server ### 4. Continue Development ``` "Generate unit tests for the tool just created" "Add a resource to get current system's Python version information" "Create a prompt template for code refactoring suggestions" ``` ## πŸ§ͺ Step 6: Run Tests ```bash # Run all tests python -m pytest tests/ -v # Run specific tests python -m pytest tests/test_tools.py -v # Generate test coverage report python -m pytest tests/ --cov=server --cov-report=html ``` Expected output: ``` ======================== test session starts ======================== collected 12 items tests/test_tools.py::TestCalculatorTools::test_add βœ“ tests/test_tools.py::TestCalculatorTools::test_subtract βœ“ ... ======================== 12 passed in 0.02s ======================== ``` ## 🐳 Step 7: Docker Deployment (Optional) ### Build Image ```bash # Build production image docker build -t my-mcp-server . # View image size docker images my-mcp-server ``` ### Run Container ```bash # Development environment docker run -p 8000:8000 \ -e ENVIRONMENT=development \ my-mcp-server # Production environment (automatic multi-process) docker run -d \ --name mcp-server \ -p 8000:8000 \ -e ENVIRONMENT=production \ my-mcp-server ``` ### Verify Container ```bash # Check container status docker ps # View logs docker logs mcp-server # Test health check curl http://localhost:8000/health ``` ## 🎯 Next Steps ### Develop Your MCP Server 1. **Custom tools**: Add business logic in `server/tools/` 2. **Add resources**: Provide data interfaces in `server/resources/` 3. **Create prompts**: Define AI interaction templates in `server/prompts/` 4. **Extend API**: Add custom endpoints in `server/routes/` ### Learn More - πŸ“š [Cursor Usage Guide](CURSOR_GUIDE_EN.md) - Deep dive into AI development - πŸ—οΈ [Best Practices](BEST_PRACTICES_EN.md) - Production-grade development standards - 🐳 [Docker Optimization](DOCKER_OPTIMIZATION_EN.md) - High-performance deployment - πŸ“Š [Monitoring & Operations](MONITORING_EN.md) - Production environment monitoring ### Get Help - πŸ’¬ [GitHub Discussions](https://github.com/WW-AI-Lab/Awesome-MCP-Scaffold/discussions) - πŸ› [Issue Reports](https://github.com/WW-AI-Lab/Awesome-MCP-Scaffold/issues) - πŸ“§ **Email**: toxingwang@gmail.com ## πŸŽ‰ FAQ ### Q: Why choose Streamable HTTP over stdio? **A**: - **stdio**: Suitable for local development and debugging - **Streamable HTTP**: Suitable for production deployment, supports load balancing, monitoring, etc. ### Q: How to customize port? **A**: ```bash # Method 1: Command line argument python run.py --port 9000 # Method 2: Environment variable export PORT=9000 python run.py # Method 3: Modify .env file echo "PORT=9000" > .env ``` ### Q: How to add environment variables? **A**: ```bash # Copy example configuration cp env.example .env # Edit configuration file vim .env ``` ### Q: Cursor AI rules not taking effect? **A**: 1. Ensure `.cursor/rules/` directory exists 2. Restart Cursor IDE 3. Check rule configuration in Cursor settings 4. Update to latest version of Cursor --- **πŸŽ‰ Congratulations! You have successfully started your first MCP server!** Now you can start using Cursor AI to rapidly develop your MCP applications.

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/WW-AI-Lab/Awesome-MCP-Scaffold'

If you have feedback or need assistance with the MCP directory API, please join our Discord server