Click on "Install Server".
Wait a few minutes for the server to deploy. Once ready, it will show a "Started" state.
In the chat, type
@followed by the MCP server name and your instructions, e.g., "@Ukrainian Statistics MCP Servershow me available datasets for energy and demographics"
That's it! The server will respond to your query, and you can continue using it as needed.
Here is a step-by-step guide with screenshots.
Ukrainian Statistics MCP Server
A Model Context Protocol (MCP) server that provides AI models with seamless access to Ukrainian statistical data from the State Statistics Service of Ukraine (ะะตัะถะฐะฒะฝะฐ ัะปัะถะฑะฐ ััะฐัะธััะธะบะธ ะฃะบัะฐัะฝะธ) via their SDMX API v3.
Features
๐บ๐ฆ Access to official Ukrainian government statistics
๐ Support for multiple statistical domains (energy, demographics, trade, etc.)
๐ Bilingual support (Ukrainian and English)
๐ Flexible data filtering and querying
๐ Comprehensive metadata exploration (dataflows, structures, codelists)
โก Fast XML-to-JSON conversion for easy data consumption
Installation
Method 1: Install from npm (Recommended)
The easiest way to install the MCP server is via npm:
After installation, add to Claude Desktop configuration:
Windows: %APPDATA%\Claude\claude_desktop_config.json
macOS: ~/Library/Application Support/Claude/claude_desktop_config.json
Linux: ~/.config/Claude/claude_desktop_config.json
Restart Claude Desktop and you're ready to use the server!
Note: On Linux/macOS, if you encounter permission issues, you may need to use
sudo npm install -g ukrainian-stats-mcp-serveror configure npm to use a user directory.
Method 2: Quick Install Using Install Scripts
The easiest way to install locally is using the provided install scripts. These scripts automatically install dependencies, build the project, and make the command globally available.
Clone the repository:
Run the install script:
Windows (PowerShell):
Windows (Command Prompt):
Linux/macOS:
The install scripts will:
โ Check for Node.js (requires version 18 or higher)
๐ฆ Install all dependencies
๐จ Build the project
๐ Link the command globally (makes
ukrainian-stats-mcpavailable system-wide)
After running the install script, add to Claude Desktop configuration:
Windows: %APPDATA%\Claude\claude_desktop_config.json
macOS: ~/Library/Application Support/Claude/claude_desktop_config.json
Linux: ~/.config/Claude/claude_desktop_config.json
Then restart Claude Desktop and you're ready to use the server!
Note: On Linux/macOS, if you encounter permission issues, you may need to run
sudo ./install.shor configure npm to use a user directory (the script will provide instructions).
Method 3: Install from GitHub
Install globally via npm from GitHub:
Add to Claude Desktop configuration:
Windows: %APPDATA%\Claude\claude_desktop_config.json
macOS: ~/Library/Application Support/Claude/claude_desktop_config.json
Restart Claude Desktop - The server will be ready to use!
Method 4: Local Development Installation
Clone the repository:
Install dependencies:
Build the project:
Add to Claude Desktop configuration (use absolute path):
Available Tools
1. list_dataflows
List all available dataflows (datasets) from the Ukrainian Statistics Service.
Purpose: Discover what statistical domains are available (e.g., energy, trade, demographics).
Parameters:
detail(optional): Level of detail -full,allstubs, orreferencestubs(default:full)
Example:
2. get_dataflow
Get detailed information about a specific dataflow.
Purpose: Understand the structure and metadata of a specific dataset.
Parameters:
dataflow_id(required): The dataflow identifier (e.g.,DF_SUPPLY_USE_ENERGY)agency_id(optional): Agency ID (default:SSSU)version(optional): Version (default:latest)
Example:
3. get_data_structure
Get the Data Structure Definition (DSD) for a dataset.
Purpose: Understand dimensions, attributes, and measures - essential for querying data.
Parameters:
dsd_id(required): Data Structure Definition ID (e.g.,DSD_SUPPLY_USE_ENERGY)agency_id(optional): Agency ID (default:SSSU)version(optional): Version (default:latest)references(optional): Include references -none,parents,children,descendants,all(default:descendants)
Example:
4. get_concept_scheme
Get concept scheme definitions.
Purpose: Understand the concepts used in statistical data.
Parameters:
concept_scheme_id(required): Concept Scheme IDagency_id(optional): Agency ID (default:SSSU)version(optional): Version (default:latest)
5. list_codelists
List all available codelists (controlled vocabularies).
Purpose: Discover available reference lists for dimensions (countries, indicators, etc.).
Parameters:
detail(optional): Level of detail -fullorallstubs(default:full)
Example:
6. get_codelist
Get a specific codelist with all values and translations.
Purpose: Understand allowed values for dimensions (essential for filtering data).
Parameters:
codelist_id(required): Codelist ID (e.g.,CL_SUPPLY_USE_ENERGY_INDICATOR)agency_id(optional): Agency ID (default:SSSU)version(optional): Version (default:latest)
Example:
7. get_data
Retrieve statistical data with flexible filtering.
Purpose: Get actual statistical time series and observations.
Parameters:
resource_id(required): Resource/dataflow IDcontext(optional): Context type -dataflow,datastructure,provisionagreement(default:dataflow)agency_id(optional): Agency ID (default:SSSU)version(optional): Version (default:latest)key(optional): Data key with wildcards (default:*for all data)start_period(optional): Start time period (e.g.,2020-01)end_period(optional): End time period (e.g.,2023-12)dimension_filters(optional): Dimension filters as object (e.g.,{"FREQ": "A", "INDICATOR": "ENERGY_PRODUCTION"})
Example:
8. check_data_availability
Check what data is available without retrieving it.
Purpose: Explore available dimensions and values before querying large datasets.
Parameters:
resource_id(required): Resource/dataflow IDcontext(optional): Context type (default:dataflow)agency_id(optional): Agency ID (default:SSSU)version(optional): Version (default:latest)key(optional): Data key with wildcards (default:*)
Example:
Common Usage Workflows
Workflow 1: Exploring a New Dataset
List dataflows to find interesting datasets
List all dataflowsGet dataflow details to understand what the dataset contains
Get dataflow DF_SUPPLY_USE_ENERGYGet data structure to see dimensions and attributes
Get data structure DSD_SUPPLY_USE_ENERGYGet codelists to see allowed values for dimensions
Get codelist CL_SUPPLY_USE_ENERGY_INDICATORRetrieve data with appropriate filters
Get data from DF_SUPPLY_USE_ENERGY for 2020-2023
Workflow 2: Quick Data Retrieval
If you already know the dataflow ID:
The AI will use the appropriate tools to fetch the data.
Data Format
All responses are returned in JSON format, converted from the original SDMX XML responses. The JSON structure follows the SDMX standard with attributes prefixed with @_.
API Information
This MCP server uses the SDMX API v3 from:
API Documentation: https://stat.gov.ua/uk/development-api/sdmx-api-v3
Examples: https://stat.gov.ua/uk/development-api/step-by-step-example
Base URL:
https://stat.gov.ua/sdmx/workspaces/default:integration/registry/sdmx/3.0
Troubleshooting
Server not appearing in Claude Desktop
Check that the path in
claude_desktop_config.jsonis correctEnsure you've built the project with
npm run buildRestart Claude Desktop
Check Claude Desktop logs for errors
API Request Failures
The Ukrainian Statistics API may have rate limits
Some datasets might be temporarily unavailable
Network connectivity to stat.gov.ua is required
XML Parsing Errors
If you encounter XML parsing errors, the API response format may have changed. Please report this as an issue.
Development
Project Structure
Running in Development Mode
License
MIT
Contributing
Contributions are welcome! Please feel free to submit issues or pull requests.
Contact
For questions about the Ukrainian Statistics API, please visit the official documentation at https://stat.gov.ua/uk/development-api/