Skip to main content
Glama

VGL CV Data MCP

by ValenGL
main.ts862 B
import { McpServer } from "@modelcontextprotocol/sdk/server/mcp.js"; import { StdioServerTransport } from "@modelcontextprotocol/sdk/server/stdio.js"; import { z } from "zod"; const server = new McpServer({ name: "fetch-vgl-cv", description: "Valentin Gonzalez Loureiro CV data.", version: "1.0.0", }); server.tool( "fetch-vgl-cv", "Tool to fetch Valentin Gonzalez Loureiro CV data.", { CV: z.string().describe("Curriculum Vitae"), }, async ({ CV }) => { const data = await fetch("https://vgl.com.ar/api/cv.json"); const response = await data.json(); return { content: [ { type: "text", text: JSON.stringify(response, null), }, ], }; } ); const transport = new StdioServerTransport(); await server.connect(transport); console.error("Weather MCP Server running on stdio");

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/ValenGL/vgl-cv-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server