Skip to main content
Glama
UpendraNath

Tavily Web Search MCP Server

by UpendraNath

load_bookmark_data

Load browser bookmarks and history data from specified folders to enable web search capabilities through natural language queries.

Instructions

Load bookmarks and history data from files

Input Schema

NameRequiredDescriptionDefault
data_folderNodata

Input Schema (JSON Schema)

{ "properties": { "data_folder": { "default": "data", "title": "Data Folder", "type": "string" } }, "type": "object" }

Implementation Reference

  • server.py:28-36 (handler)
    The core handler function for the 'load_bookmark_data' MCP tool, registered with @mcp.tool(). It instantiates BookmarkOrganizer and calls its load_data() method to load and count bookmark/history items.
    def load_bookmark_data(data_folder: str = "data") -> str: """Load bookmarks and history data from files""" try: from bookmark_organizer import BookmarkOrganizer organizer = BookmarkOrganizer(data_folder) organizer.load_data() return f"Loaded {len(organizer.all_items)} total items from {data_folder}" except Exception as e: return f"Error loading data: {str(e)}"
  • Supporting method in BookmarkOrganizer class that loads bookmark data from HTML file and browser history from CSV file into self.all_items list.
    def load_data(self): """Load all bookmark and history data""" print("Loading data from files...") # Load bookmarks bookmark_file = self.data_folder / "bookmarks_10_26_25.html" if bookmark_file.exists(): bookmarks = self.parser.parse_netscape_html(str(bookmark_file)) self.all_items.extend(bookmarks) print(f"Loaded {len(bookmarks)} bookmarks") # Load history history_file = self.data_folder / "BrowserHistory_10_26_25.csv" if history_file.exists(): history = self.parser.parse_csv_history(str(history_file)) self.all_items.extend(history) print(f"Loaded {len(history)} history entries") print(f"Total items loaded: {len(self.all_items)}")

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/UpendraNath/MCP'

If you have feedback or need assistance with the MCP directory API, please join our Discord server