Skip to main content
Glama

Moatless MCP Server

by TwT23333

build_vector_index

Create a vector index for semantic code search by generating embeddings with tree-sitter and Jina AI, enabling efficient and accurate querying of source code files.

Instructions

Build a vector index for semantic code search using tree-sitter and Jina embeddings

Input Schema

NameRequiredDescriptionDefault
api_keyNoJina AI API key for embeddings (can also be set via JINA_API_KEY env var)
file_patternsNoOptional list of glob patterns to filter files (e.g., ['**/*.py', '**/*.js'])
force_rebuildNoForce rebuild even if index already exists
modelNoJina embedding model to usejina-embeddings-v3

Input Schema (JSON Schema)

{ "properties": { "api_key": { "description": "Jina AI API key for embeddings (can also be set via JINA_API_KEY env var)", "type": "string" }, "file_patterns": { "description": "Optional list of glob patterns to filter files (e.g., ['**/*.py', '**/*.js'])", "items": { "type": "string" }, "type": "array" }, "force_rebuild": { "default": false, "description": "Force rebuild even if index already exists", "type": "boolean" }, "model": { "default": "jina-embeddings-v3", "description": "Jina embedding model to use", "type": "string" } }, "type": "object" }
Install Server

Other Tools from Moatless MCP Server

Related Tools

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/TwT23333/mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server