Skip to main content
Glama
Traia-IO

Tesy 56 MCP Server

by Traia-IO

tesy 56 MCP Server

This is an MCP (Model Context Protocol) server that provides access to the tesy 56 API. It enables AI agents and LLMs to interact with tesy 56 through standardized tools.

Features

  • 🔧 MCP Protocol: Built on the Model Context Protocol for seamless AI integration

  • 🌐 Full API Access: Provides tools for interacting with tesy 56 endpoints

  • 🐳 Docker Support: Easy deployment with Docker and Docker Compose

  • Async Operations: Built with FastMCP for efficient async handling

API Documentation

Available Tools

This server provides the following tools:

  • example_tool: Placeholder tool (to be implemented)

Note: Replace

Installation

  1. Clone this repository:

    git clone https://github.com/Traia-IO/tesy-56-mcp-server.git cd tesy-56-mcp-server
  2. Run with Docker:

    ./run_local_docker.sh

Using Docker Compose

  1. Create a .env file with your configuration:

PORT=8000

2. Start the server: ```bash docker-compose up

Manual Installation

  1. Install dependencies using uv:

    uv pip install -e .
  2. Run the server:

uv run python -m server

## Usage ### Health Check Test if the server is running: ```bash python mcp_health_check.py

Using with CrewAI

from traia_iatp.mcp.traia_mcp_adapter import create_mcp_adapter # Connect to the MCP server with create_mcp_adapter( url="http://localhost:8000/mcp/" ) as tools: # Use the tools for tool in tools: print(f"Available tool: {tool.name}") # Example usage result = await tool.example_tool(query="test") print(result)

Development

Testing the Server

  1. Start the server locally

  2. Run the health check: python mcp_health_check.py

  3. Test individual tools using the CrewAI adapter

Adding New Tools

To add new tools, edit server.py and:

  1. Create API client functions for tesy 56 endpoints

  2. Add @mcp.tool() decorated functions

  3. Update this README with the new tools

  4. Update deployment_params.json with the tool names in the capabilities array

Deployment

Deployment Configuration

The deployment_params.json file contains the deployment configuration for this MCP server:

{ "github_url": "https://github.com/Traia-IO/tesy-56-mcp-server", "mcp_server": { "name": "tesy-56-mcp", "description": "Uih uih uhoui houiho", "server_type": "streamable-http", "capabilities": [ // List all implemented tool names here "example_tool" ] }, "deployment_method": "cloud_run", "gcp_project_id": "traia-mcp-servers", "gcp_region": "us-central1", "tags": ["tesy 56", "api"], "ref": "main" }

Important: Always update the capabilities array when you add or remove tools!

Google Cloud Run

This server is designed to be deployed on Google Cloud Run. The deployment will:

  1. Build a container from the Dockerfile

  2. Deploy to Cloud Run with the specified configuration

  3. Expose the /mcp endpoint for client connections

Environment Variables

  • PORT: Server port (default: 8000)

  • STAGE: Environment stage (default: MAINNET, options: MAINNET, TESTNET)

  • LOG_LEVEL: Logging level (default: INFO)

Troubleshooting

  1. Server not starting: Check Docker logs with docker logs <container-id>

  2. Connection errors: Ensure the server is running on the expected port3. Tool errors: Check the server logs for detailed error messages

Contributing

  1. Fork the repository

  2. Create a feature branch

  3. Implement new tools or improvements

  4. Update the README and deployment_params.json

  5. Submit a pull request

License

MIT License

-
security - not tested
F
license - not found
-
quality - not tested

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Traia-IO/tesy-56-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server