Skip to main content
Glama
Traia-IO

tes-mcp-server

by Traia-IO

tes-mcp-server MCP Server

This is an MCP (Model Context Protocol) server that provides access to the tes-mcp-server API. It enables AI agents and LLMs to interact with tes-mcp-server through standardized tools.

Features

  • 🔧 MCP Protocol: Built on the Model Context Protocol for seamless AI integration

  • 🌐 Full API Access: Provides tools for interacting with tes-mcp-server endpoints

  • 🐳 Docker Support: Easy deployment with Docker and Docker Compose

  • Async Operations: Built with FastMCP for efficient async handling

API Documentation

Available Tools

This server provides the following tools:

  • example_tool: Placeholder tool (to be implemented)

Note: Replace

Installation

  1. Clone this repository:

    git clone https://github.com/Traia-IO/tes-mcp-server-mcp-server.git cd tes-mcp-server-mcp-server
  2. Run with Docker:

    ./run_local_docker.sh

Using Docker Compose

  1. Create a .env file with your configuration:

PORT=8000

2. Start the server: ```bash docker-compose up

Manual Installation

  1. Install dependencies using uv:

    uv pip install -e .
  2. Run the server:

uv run python -m server

## Usage ### Health Check Test if the server is running: ```bash python mcp_health_check.py

Using with CrewAI

from traia_iatp.mcp.traia_mcp_adapter import create_mcp_adapter # Connect to the MCP server with create_mcp_adapter( url="http://localhost:8000/mcp/" ) as tools: # Use the tools for tool in tools: print(f"Available tool: {tool.name}") # Example usage result = await tool.example_tool(query="test") print(result)

Development

Testing the Server

  1. Start the server locally

  2. Run the health check: python mcp_health_check.py

  3. Test individual tools using the CrewAI adapter

Adding New Tools

To add new tools, edit server.py and:

  1. Create API client functions for tes-mcp-server endpoints

  2. Add @mcp.tool() decorated functions

  3. Update this README with the new tools

  4. Update deployment_params.json with the tool names in the capabilities array

Deployment

Deployment Configuration

The deployment_params.json file contains the deployment configuration for this MCP server:

{ "github_url": "https://github.com/Traia-IO/tes-mcp-server-mcp-server", "mcp_server": { "name": "tes-mcp-server-mcp", "description": "This mcp server exposes public weather and climate data through a standardized mcp-compatible api. it allows ai agents to retrieve current weather conditions, 7-day forecasts, and historical climate data for supported locations worldwide. use cases include: - ai-powered travel planning - weather-aware automation - data enrichment for conversational agents ", "server_type": "streamable-http", "capabilities": [ // List all implemented tool names here "example_tool" ] }, "deployment_method": "cloud_run", "gcp_project_id": "traia-mcp-servers", "gcp_region": "us-central1", "tags": ["tes-mcp-server", "api"], "ref": "main" }

Important: Always update the capabilities array when you add or remove tools!

Google Cloud Run

This server is designed to be deployed on Google Cloud Run. The deployment will:

  1. Build a container from the Dockerfile

  2. Deploy to Cloud Run with the specified configuration

  3. Expose the /mcp endpoint for client connections

Environment Variables

  • PORT: Server port (default: 8000)

  • STAGE: Environment stage (default: MAINNET, options: MAINNET, TESTNET)

  • LOG_LEVEL: Logging level (default: INFO)

Troubleshooting

  1. Server not starting: Check Docker logs with docker logs <container-id>

  2. Connection errors: Ensure the server is running on the expected port3. Tool errors: Check the server logs for detailed error messages

Contributing

  1. Fork the repository

  2. Create a feature branch

  3. Implement new tools or improvements

  4. Update the README and deployment_params.json

  5. Submit a pull request

License

MIT License

-
security - not tested
F
license - not found
-
quality - not tested

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Traia-IO/tes-mcp-server-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server