.env.example•4.09 kB
# ========================================
# MCP CRAWL4AI SERVER CONFIGURATION
# ========================================
# The transport for the MCP server - either 'sse' or 'stdio' (defaults to sse if left empty)
TRANSPORT=sse
# Host to bind to if using sse as the transport (leave empty if using stdio)
# Set this to 0.0.0.0 if using Docker, otherwise set to localhost (if using uv)
HOST=0.0.0.0
# Port to listen on if using sse as the transport (leave empty if using stdio).
# Default port for Docker deployment
PORT=8051
# Get your Open AI API Key by following these instructions -
# https://help.openai.com/en/articles/4936850-where-do-i-find-my-openai-api-key
# This is for the embedding model - text-embed-small-3 will be used
OPENAI_API_KEY=
# The LLM you want to use for summaries and contextual embeddings
# Generally this is a very cheap and fast LLM like gpt-4.1-nano-2025-04-14
MODEL_CHOICE=gpt-4.1-nano-2025-04-14
# ========================================
# SEARXNG INTEGRATION CONFIGURATION
# ========================================
# SearXNG URL for your search instance - configured for Docker Compose integration
# When using Docker Compose, this points to the internal SearXNG service
# For external SearXNG instances, change to: https://searx.example.com or http://host.docker.internal:8080 (for docker hosted searxng instances)
SEARXNG_URL=http://searxng:8080
# Optional: Custom user agent for SearXNG requests
SEARXNG_USER_AGENT=MCP-Crawl4AI-RAG-Server/1.0
# Optional: Default search engines to use (comma-separated list)
# Available engines depend on your SearXNG instance configuration
SEARXNG_DEFAULT_ENGINES=google,bing,duckduckgo
# Optional: Request timeout in seconds for SearXNG API calls
SEARXNG_TIMEOUT=30
# ========================================
# OPTIONAL CADDY CONFIGURATION
# ========================================
# Optional: Hostname for SearXNG Caddy reverse proxy
# Change this to your domain name for production deployment
# Default: http://localhost (matches docker-compose.yml default)
SEARXNG_HOSTNAME=http://localhost
# TLS configuration for Caddy
# Use 'internal' for self-signed certificates or provide your email for Let's Encrypt
# For production with real domain: your-email@example.com
# SEARXNG_TLS=internal
# RAG strategies - set these to "true" or "false" (default to "false")
# USE_CONTEXTUAL_EMBEDDINGS: Enhances embeddings with contextual information for better retrieval
USE_CONTEXTUAL_EMBEDDINGS=false
# USE_HYBRID_SEARCH: Combines vector similarity search with keyword search for better results
USE_HYBRID_SEARCH=false
# USE_AGENTIC_RAG: Enables code example extraction, storage, and specialized code search functionality
USE_AGENTIC_RAG=false
# USE_RERANKING: Applies cross-encoder reranking to improve search result relevance
USE_RERANKING=false
# USE_KNOWLEDGE_GRAPH: Enables AI hallucination detection and repository parsing tools using Neo4j
# If you set this to true, you must also set the Neo4j environment variables below.
USE_KNOWLEDGE_GRAPH=false
# For the Supabase version (sample_supabase_agent.py), set your Supabase URL and Service Key.
# Get your SUPABASE_URL from the API section of your Supabase project settings -
# https://supabase.com/dashboard/project/<your project ID>/settings/api
SUPABASE_URL=
# Get your SUPABASE_SERVICE_KEY from the API section of your Supabase project settings -
# https://supabase.com/dashboard/project/<your project ID>/settings/api
# On this page it is called the service_role secret.
SUPABASE_SERVICE_KEY=
# Neo4j Configuration for Knowledge Graph Tools
# These are required for the AI hallucination detection and repository parsing tools
# Leave empty to disable knowledge graph functionality
# Neo4j connection URI - use bolt://localhost:7687 for local, neo4j:// for cloud instances
# IMPORTANT: If running the MCP server through Docker, change localhost to host.docker.internal
NEO4J_URI=bolt://localhost:7687
# Neo4j username (usually 'neo4j' for default installations)
NEO4J_USER=neo4j
# Neo4j password for your database instance
NEO4J_PASSWORD=