# OpticMCP
[](https://pypi.org/project/optic-mcp/)
[](https://www.python.org/downloads/)
[](https://opensource.org/licenses/MIT)
A Model Context Protocol (MCP) server that provides camera/vision tools for AI assistants. Connect to cameras and capture images for use with LLMs.
## Vision
OpticMCP aims to be a universal camera interface for AI assistants, supporting any camera type:
- **USB Cameras** ✅
- **IP/Network Cameras** ✅ - RTSP, HLS, MJPEG streams
- **Screen Capture** ✅ - Desktop/monitor capture
- **HTTP Images** ✅ - Download images from URLs
- **QR/Barcode Decoding** ✅ - Decode QR codes and barcodes
- **Image Analysis** ✅ - Metadata, stats, histograms, dominant colors
- **Image Comparison** ✅ - SSIM, MSE, perceptual hashing, visual diff
- **Detection** ✅ - Face detection, motion detection, edge detection
- **Raspberry Pi Cameras** (Planned) - CSI camera modules
- **Mobile Cameras** (Planned) - Phone camera integration
## Current Features
### USB Cameras
- **list_cameras** - Scan and list all available USB cameras
- **save_image** - Capture a frame and save directly to a file
### Camera Streaming
- **start_stream** - Start streaming a camera to a localhost HTTP server (MJPEG)
- **stop_stream** - Stop streaming a camera
- **list_streams** - List all active camera streams
### Multi-Camera Dashboard
- **start_dashboard** - Start a dynamic dashboard that displays all active camera streams in a responsive grid
- **stop_dashboard** - Stop the dashboard server
### RTSP Streams
- **rtsp_save_image** - Capture and save a frame from an RTSP stream
- **rtsp_check_stream** - Validate RTSP stream and get properties
### HLS Streams (HTTP Live Streaming)
- **hls_save_image** - Capture and save a frame from an HLS stream
- **hls_check_stream** - Validate HLS stream and get properties
### MJPEG Streams
- **mjpeg_save_image** - Capture a frame from an MJPEG stream (common in IP cameras, ESP32-CAM)
- **mjpeg_check_stream** - Validate MJPEG stream availability
### Screen Capture
- **screen_list_monitors** - List all available monitors/displays
- **screen_save_image** - Capture full screenshot of a monitor
- **screen_save_region** - Capture a specific region of the screen
### HTTP Images
- **http_save_image** - Download and save an image from any URL
- **http_check_image** - Check if a URL points to a valid image
### QR/Barcode Decoding (requires libzbar)
- **decode_qr** - Decode QR codes from an image
- **decode_barcode** - Decode barcodes (EAN, UPC, Code128, etc.)
- **decode_all** - Decode all QR codes and barcodes from an image
- **decode_and_annotate** - Decode and save annotated image with bounding boxes
### Image Analysis
- **image_get_metadata** - Extract image metadata including EXIF data
- **image_get_stats** - Calculate brightness, contrast, sharpness
- **image_get_histogram** - Generate color histogram with optional visualization
- **image_get_dominant_colors** - Extract dominant colors using K-means clustering
### Image Comparison
- **image_compare_ssim** - Compare images using Structural Similarity Index
- **image_compare_mse** - Compare images using Mean Squared Error
- **image_compare_hash** - Compare images using perceptual hashing (phash, dhash, ahash)
- **image_get_hash** - Generate perceptual hash for an image
- **image_diff** - Create visual diff highlighting differences
- **image_compare_histograms** - Compare images by color histograms
### Detection
- **detect_faces** - Detect faces using Haar cascades or DNN
- **detect_faces_save** - Detect faces and save annotated image
- **detect_motion** - Detect motion between two frames
- **detect_edges** - Detect edges using Canny, Sobel, or Laplacian
- **detect_objects** - Detect common objects using MobileNet SSD
## Requirements
- Python 3.10+
- USB camera connected to your system
## Installation
### From PyPI (Recommended)
```bash
pip install optic-mcp
```
Or with `uv`:
```bash
uv pip install optic-mcp
```
### From Source
```bash
# Clone the repository
git clone https://github.com/Timorleiderman/OpticMCP.git
cd OpticMCP
# Install dependencies with uv
uv sync
```
## Usage
### Running the MCP Server
If installed from PyPI:
```bash
optic-mcp
```
Or with uvx (no installation required):
```bash
uvx optic-mcp
```
### Running from Source
```bash
uv run optic-mcp
```
## MCP Configuration
### Claude Desktop
Add to your Claude Desktop configuration file:
**macOS:** `~/Library/Application Support/Claude/claude_desktop_config.json`
**Windows:** `%APPDATA%\Claude\claude_desktop_config.json`
```json
{
"mcpServers": {
"optic-mcp": {
"command": "uvx",
"args": ["optic-mcp"]
}
}
}
```
### OpenCode
Add to your `opencode.json` (in `.opencode/` in your project directory or `~/.opencode/` globally):
```json
{
"mcp": {
"optic-mcp": {
"type": "local",
"command": ["uvx", "optic-mcp"]
}
}
}
```
### Other MCP Clients
Using uvx (recommended - no installation required):
```json
{
"mcpServers": {
"optic-mcp": {
"command": "uvx",
"args": ["optic-mcp"]
}
}
}
```
Using pip installation:
```json
{
"mcpServers": {
"optic-mcp": {
"command": "optic-mcp"
}
}
}
```
From source:
```json
{
"mcpServers": {
"optic-mcp": {
"command": "uv",
"args": ["run", "--directory", "/path/to/OpticMCP", "optic-mcp"]
}
}
}
```
## Tools
### list_cameras
Scans for available USB cameras (indices 0-9) and returns their status.
```json
[
{
"index": 0,
"status": "available",
"backend": "AVFOUNDATION",
"description": "Camera 0 (AVFOUNDATION)"
}
]
```
### save_image
Captures a frame and saves it to disk.
**Parameters:**
- `file_path` (str) - Path where the image will be saved
- `camera_index` (int, default: 0) - Camera index to capture from
**Returns:** Success message with file path
### Streaming Tools
Stream cameras to a local HTTP server for real-time viewing in any browser.
#### start_stream
Start streaming a camera to a localhost HTTP server. The stream uses MJPEG format which is widely supported.
**Parameters:**
- `camera_index` (int, default: 0) - Camera index to stream
- `port` (int, default: 8080) - Port to serve the stream on
**Returns:** Dictionary with stream URLs and status
```json
{
"status": "started",
"camera_index": 0,
"port": 8080,
"url": "http://localhost:8080",
"stream_url": "http://localhost:8080/stream"
}
```
**Usage:**
- Open `http://localhost:8080` in a browser to view the stream with a simple UI
- Use `http://localhost:8080/stream` for the raw MJPEG stream (can be embedded in other applications)
#### stop_stream
Stop streaming a camera.
**Parameters:**
- `camera_index` (int, default: 0) - Camera index to stop streaming
**Returns:** Dictionary with status
#### list_streams
List all active camera streams.
**Returns:** List of active stream information including URLs and ports
### Dashboard Tools
#### start_dashboard
Start a dynamic multi-camera dashboard server. The dashboard automatically detects all active camera streams and displays them in a responsive grid layout.
**Parameters:**
- `port` (int, default: 9000) - Port to serve the dashboard on
**Returns:** Dictionary with dashboard URL and status
```json
{
"status": "started",
"port": 9000,
"url": "http://localhost:9000"
}
```
**Usage:**
1. Start one or more camera streams with `start_stream`
2. Start the dashboard with `start_dashboard`
3. Open `http://localhost:9000` in a browser
4. The dashboard auto-updates every 3 seconds to detect new/removed streams
#### stop_dashboard
Stop the dashboard server.
**Returns:** Dictionary with status
### RTSP Tools
> **Note:** RTSP functionality has not been tested with real RTSP hardware/streams. It is implemented but may require adjustments for specific camera vendors.
#### rtsp_save_image
Captures a frame from an RTSP stream and saves it to disk.
**Parameters:**
- `rtsp_url` (str) - RTSP stream URL (e.g., `rtsp://ip:554/stream`)
- `file_path` (str) - Path where the image will be saved
- `timeout_seconds` (int, default: 10) - Connection timeout
**Returns:** Success message with file path
#### rtsp_check_stream
Validates an RTSP stream and returns stream information.
**Parameters:**
- `rtsp_url` (str) - RTSP stream URL to validate
- `timeout_seconds` (int, default: 10) - Connection timeout
**Returns:** Dictionary with stream status and properties (width, height, fps, codec)
### HLS Tools
#### hls_save_image
Captures a frame from an HLS stream and saves it to disk.
**Parameters:**
- `hls_url` (str) - HLS stream URL (typically ending in `.m3u8`)
- `file_path` (str) - Path where the image will be saved
- `timeout_seconds` (int, default: 30) - Connection timeout
**Returns:** Success message with file path
#### hls_check_stream
Validates an HLS stream and returns stream information.
**Parameters:**
- `hls_url` (str) - HLS stream URL to validate
- `timeout_seconds` (int, default: 30) - Connection timeout
**Returns:** Dictionary with stream status and properties (width, height, fps, codec)
### MJPEG Tools
#### mjpeg_save_image
Captures a frame from an MJPEG stream (common in IP cameras, ESP32-CAM, Arduino cameras).
**Parameters:**
- `mjpeg_url` (str) - MJPEG stream URL (e.g., `http://camera/video.mjpg`)
- `file_path` (str) - Path where the image will be saved
- `timeout_seconds` (int, default: 10) - Connection timeout
**Returns:** Dictionary with status, file_path, and size_bytes
#### mjpeg_check_stream
Validates an MJPEG stream URL.
**Parameters:**
- `mjpeg_url` (str) - MJPEG stream URL to validate
- `timeout_seconds` (int, default: 10) - Connection timeout
**Returns:** Dictionary with status, url, and content_type
### Screen Capture Tools
#### screen_list_monitors
Lists all available monitors/displays.
**Returns:** List of monitors with id, dimensions, and position
#### screen_save_image
Captures a full screenshot of a monitor.
**Parameters:**
- `file_path` (str) - Path where the image will be saved
- `monitor` (int, default: 0) - Monitor index (0 = all monitors combined)
**Returns:** Dictionary with status, file_path, and dimensions
#### screen_save_region
Captures a specific region of the screen.
**Parameters:**
- `file_path` (str) - Path where the image will be saved
- `x` (int) - X coordinate of top-left corner
- `y` (int) - Y coordinate of top-left corner
- `width` (int) - Width in pixels
- `height` (int) - Height in pixels
**Returns:** Dictionary with status, file_path, and region details
### HTTP Image Tools
#### http_save_image
Downloads an image from a URL and saves it to disk.
**Parameters:**
- `url` (str) - Image URL (http:// or https://)
- `file_path` (str) - Path where the image will be saved
- `timeout_seconds` (int, default: 30) - Connection timeout
**Returns:** Dictionary with status, file_path, size_bytes, and content_type
#### http_check_image
Validates an image URL using a HEAD request.
**Parameters:**
- `url` (str) - Image URL to validate
- `timeout_seconds` (int, default: 10) - Connection timeout
**Returns:** Dictionary with status, content_type, and size_bytes
### QR/Barcode Tools
> **Note:** These tools require the `libzbar` system library. Install with: `brew install zbar` (macOS) or `apt install libzbar0` (Linux)
#### decode_qr
Decodes QR codes from an image file.
**Parameters:**
- `file_path` (str) - Path to the image file
**Returns:** Dictionary with found, count, and codes list
#### decode_barcode
Decodes barcodes (EAN, UPC, Code128, etc.) from an image file.
**Parameters:**
- `file_path` (str) - Path to the image file
**Returns:** Dictionary with found, count, and codes list
#### decode_all
Decodes all QR codes and barcodes from an image file.
**Parameters:**
- `file_path` (str) - Path to the image file
**Returns:** Dictionary with found, count, and codes list
#### decode_and_annotate
Decodes codes and saves an annotated image with bounding boxes.
**Parameters:**
- `file_path` (str) - Path to the input image
- `output_path` (str) - Path for the annotated output image
**Returns:** Dictionary with found, count, output_path, and codes list
### Image Analysis Tools
#### image_get_metadata
Extracts metadata from an image file including dimensions, format, and EXIF data.
**Parameters:**
- `file_path` (str) - Path to the image file
**Returns:** Dictionary with width, height, format, mode, file_size_bytes, and exif dict
```json
{
"width": 1920,
"height": 1080,
"format": "JPEG",
"mode": "RGB",
"file_size_bytes": 245678,
"exif": {"Make": "Canon", "Model": "EOS R5", ...}
}
```
#### image_get_stats
Calculates basic image statistics including brightness, contrast, and sharpness.
**Parameters:**
- `file_path` (str) - Path to the image file
**Returns:** Dictionary with brightness (0-1), contrast (0-1), sharpness, and is_grayscale
```json
{
"brightness": 0.65,
"contrast": 0.42,
"sharpness": 2.35,
"is_grayscale": false
}
```
#### image_get_histogram
Calculates color histogram for each channel (R, G, B) with optional visualization.
**Parameters:**
- `file_path` (str) - Path to the image file
- `output_path` (str, optional) - Path to save histogram visualization
**Returns:** Dictionary with channels (r, g, b arrays of 256 values) and output_path if provided
#### image_get_dominant_colors
Extracts dominant colors using K-means clustering.
**Parameters:**
- `file_path` (str) - Path to the image file
- `num_colors` (int, default: 5) - Number of colors to extract (1-20)
**Returns:** List of colors with RGB values, hex codes, and percentages
```json
{
"colors": [
{"rgb": [64, 128, 192], "hex": "#4080C0", "percentage": 35.2},
{"rgb": [255, 255, 255], "hex": "#FFFFFF", "percentage": 28.1}
]
}
```
### Image Comparison Tools
#### image_compare_ssim
Compares two images using Structural Similarity Index (SSIM).
**Parameters:**
- `file_path_1` (str) - Path to first image
- `file_path_2` (str) - Path to second image
- `threshold` (float, default: 0.95) - Similarity threshold
**Returns:** Dictionary with ssim_score (-1 to 1), is_similar, and threshold
```json
{
"ssim_score": 0.9823,
"is_similar": true,
"threshold": 0.95
}
```
#### image_compare_mse
Compares two images using Mean Squared Error.
**Parameters:**
- `file_path_1` (str) - Path to first image
- `file_path_2` (str) - Path to second image
**Returns:** Dictionary with mse, is_identical, and normalized_mse (0-1)
#### image_compare_hash
Compares two images using perceptual hashing.
**Parameters:**
- `file_path_1` (str) - Path to first image
- `file_path_2` (str) - Path to second image
- `hash_type` (str, default: "phash") - Hash type: "phash", "dhash", or "ahash"
**Returns:** Dictionary with hash_1, hash_2, distance, is_similar, and hash_type
```json
{
"hash_1": "8f0f0f0f0f0f0f0f",
"hash_2": "8f0f0f0f0f0f0f0f",
"distance": 0,
"is_similar": true,
"hash_type": "phash"
}
```
#### image_get_hash
Generates a perceptual hash for a single image.
**Parameters:**
- `file_path` (str) - Path to the image file
- `hash_type` (str, default: "phash") - Hash type: "phash", "dhash", or "ahash"
**Returns:** Dictionary with hash (hex string) and hash_type
#### image_diff
Creates a visual diff highlighting differences between two images.
**Parameters:**
- `file_path_1` (str) - Path to reference image
- `file_path_2` (str) - Path to comparison image
- `output_path` (str) - Path to save diff visualization
- `threshold` (int, default: 30) - Pixel difference threshold (0-255)
**Returns:** Dictionary with status, output_path, diff_percentage, and diff_pixels
```json
{
"status": "success",
"output_path": "/path/to/diff.png",
"diff_percentage": 12.5,
"diff_pixels": 25600
}
```
#### image_compare_histograms
Compares two images by their color histograms.
**Parameters:**
- `file_path_1` (str) - Path to first image
- `file_path_2` (str) - Path to second image
- `method` (str, default: "correlation") - Method: "correlation", "chi_square", "intersection", "bhattacharyya"
**Returns:** Dictionary with score, method, and is_similar
### Detection Tools
#### detect_faces
Detects faces in an image using Haar cascades or DNN.
**Parameters:**
- `file_path` (str) - Path to the image file
- `method` (str, default: "haar") - Detection method: "haar" (fast) or "dnn" (accurate)
**Returns:** Dictionary with found, count, and faces list containing x, y, width, height, and confidence (DNN only)
```json
{
"found": true,
"count": 2,
"faces": [
{"x": 120, "y": 80, "width": 150, "height": 150},
{"x": 400, "y": 100, "width": 140, "height": 140, "confidence": 0.95}
]
}
```
#### detect_faces_save
Detects faces and saves an annotated image with bounding boxes.
**Parameters:**
- `file_path` (str) - Path to the input image
- `output_path` (str) - Path to save annotated image
- `method` (str, default: "haar") - Detection method: "haar" or "dnn"
**Returns:** Dictionary with found, count, output_path, and faces list
#### detect_motion
Compares two frames to detect motion between them.
**Parameters:**
- `file_path_1` (str) - Path to the first (earlier) image
- `file_path_2` (str) - Path to the second (later) image
- `threshold` (float, default: 25.0) - Pixel difference threshold (0-255)
**Returns:** Dictionary with motion_detected, motion_percentage, motion_regions list, and changed_pixels
```json
{
"motion_detected": true,
"motion_percentage": 15.3,
"motion_regions": [
{"x": 200, "y": 150, "width": 80, "height": 120}
],
"changed_pixels": 31250
}
```
#### detect_edges
Detects edges in an image using various methods.
**Parameters:**
- `file_path` (str) - Path to the input image
- `output_path` (str) - Path to save edge detection output
- `method` (str, default: "canny") - Method: "canny", "sobel", or "laplacian"
**Returns:** Dictionary with status, output_path, and method
```json
{
"status": "success",
"output_path": "/path/to/edges.png",
"method": "canny"
}
```
#### detect_objects
Detects common objects using MobileNet SSD.
**Parameters:**
- `file_path` (str) - Path to the image file
- `confidence_threshold` (float, default: 0.5) - Minimum confidence (0-1)
**Returns:** Dictionary with found, count, and objects list
> **Note:** Requires pre-trained MobileNet SSD model files. Returns empty result if models are not available.
```json
{
"found": true,
"count": 3,
"objects": [
{"class": "person", "confidence": 0.92, "x": 50, "y": 100, "width": 200, "height": 400},
{"class": "car", "confidence": 0.87, "x": 300, "y": 250, "width": 180, "height": 120}
]
}
```
## Technical Notes
### OpenCV + MCP Compatibility
OpenCV prints debug messages to stderr which corrupts MCP's stdio communication. This server suppresses stderr at the file descriptor level before importing cv2 to prevent this issue.
## Roadmap
- [x] **v0.1.0** - USB camera support via OpenCV
- [x] **v0.2.0** - IP camera support (RTSP and HLS streams)
- [x] **v0.3.0** - Multi-camera dashboard with realtime streaming
- [x] **v0.4.0** - Screen capture, MJPEG streams, HTTP images, QR/barcode decoding
- [x] **v0.5.0** - Image analysis and comparison tools (metadata, stats, SSIM, hashing, diff)
- [x] **v0.6.0** - Detection tools (face detection, motion detection, edge detection)
- [ ] **v0.7.0** - Camera configuration (resolution, format, etc.)
- [ ] **v0.8.0** - Video recording capabilities
## Contributing
Contributions are welcome! See [CONTRIBUTING.md](CONTRIBUTING.md) for guidelines.
## License
MIT
<a href="https://glama.ai/mcp/servers/@Timorleiderman/OpticMCP">
<img width="380" height="200" src="https://glama.ai/mcp/servers/@Timorleiderman/OpticMCP/badge" />
</a>