Perplexity Insight MCP Server
#!/usr/bin/env node
// Import only the required modules and avoid direct SDK class usage
// since we're implementing the JSON-RPC protocol directly
import dotenv from "dotenv";
import { z } from "zod";
// Load environment variables
dotenv.config();
// Define schemas for tool parameters
const askSchema = {
question: z.string().describe("The question to ask Perplexity AI"),
model: z.enum(["sonar-reasoning", "sonar-pro", "sonar-deep-research"]).default("sonar-reasoning").describe("Perplexity model to use"),
system_prompt: z.string().default("You are a helpful assistant. Ensure all of your outputs are in UK English only.").describe("Optional system prompt to guide the model's behaviour"),
max_tokens: z.number().default(1000).describe("Maximum number of tokens in the response")
};
const searchSchema = {
query: z.string().describe("Search query to find information online"),
model: z.enum(["sonar-reasoning", "sonar-pro", "sonar-deep-research"]).default("sonar-reasoning").describe("Perplexity model to use"),
system_prompt: z.string().default("You are a helpful assistant. Ensure all of your outputs are in UK English only.").describe("Optional system prompt to guide the model's behaviour"),
max_tokens: z.number().default(1000).describe("Maximum number of tokens in the response")
};
// Check for API key
const PERPLEXITY_API_KEY = process.env.PERPLEXITY_API_KEY;
if (!PERPLEXITY_API_KEY) {
console.error("Error: PERPLEXITY_API_KEY environment variable is required");
process.exit(1);
}
// API endpoint
const API_ENDPOINT = "https://api.perplexity.ai/chat/completions";
// Rate limiting configuration
const RATE_LIMIT = {
perMinute: 60,
perDay: 10000
};
let requestCount = {
minute: 0,
day: 0,
lastMinuteReset: Date.now()
};
// Check rate limits before making API calls
function checkRateLimit() {
const now = Date.now();
if (now - requestCount.lastMinuteReset > 60000) {
requestCount.minute = 0;
requestCount.lastMinuteReset = now;
}
if (requestCount.minute >= RATE_LIMIT.perMinute ||
requestCount.day >= RATE_LIMIT.perDay) {
throw new Error('Rate limit exceeded');
}
requestCount.minute++;
requestCount.day++;
}
// Types for Perplexity API responses
interface PerplexityResponse {
id: string;
model: string;
choices: Array<{
index: number;
message: {
role: string;
content: string;
};
finish_reason: string;
}>;
usage: {
prompt_tokens: number;
completion_tokens: number;
total_tokens: number;
};
citations?: Array<string>;
}
// Function to ask Perplexity AI a question
async function askPerplexity(
question: string,
model: string = "sonar-reasoning",
system_prompt: string = "You are a helpful assistant. Ensure all of your outputs are in UK English only.",
max_tokens: number = 1000
) {
checkRateLimit();
const payload = {
model: model,
messages: [
{
role: "system",
content: system_prompt
},
{
role: "user",
content: question
}
],
max_tokens: max_tokens
};
try {
const response = await fetch(API_ENDPOINT, {
method: 'POST',
headers: {
'Content-Type': 'application/json',
'Authorization': `Bearer ${PERPLEXITY_API_KEY}`
},
body: JSON.stringify(payload)
});
if (!response.ok) {
const errorText = await response.text();
throw new Error(`Perplexity API error: ${response.status} ${errorText}`);
}
const data = await response.json() as PerplexityResponse;
// Format the response with proper content structure
return {
content: [
{
type: "text",
text: data.choices[0].message.content
}
],
isError: false
};
} catch (error) {
console.error("Error calling Perplexity API:", error);
return {
content: [
{
type: "text",
text: `Error: ${error instanceof Error ? error.message : String(error)}`
}
],
isError: true
};
}
}
// Function to search with Perplexity AI
async function searchPerplexity(
query: string,
model: string = "sonar-reasoning",
system_prompt: string = "You are a helpful assistant. Ensure all of your outputs are in UK English only.",
max_tokens: number = 1000
) {
checkRateLimit();
const payload = {
model: model,
messages: [
{
role: "system",
content: system_prompt + " When responding to search queries, please include sources and citations."
},
{
role: "user",
content: `Search for information about: ${query}`
}
],
max_tokens: max_tokens
};
try {
const response = await fetch(API_ENDPOINT, {
method: 'POST',
headers: {
'Content-Type': 'application/json',
'Authorization': `Bearer ${PERPLEXITY_API_KEY}`
},
body: JSON.stringify(payload)
});
if (!response.ok) {
const errorText = await response.text();
throw new Error(`Perplexity API error: ${response.status} ${errorText}`);
}
const data = await response.json() as PerplexityResponse;
// Format the response with proper content structure
return {
content: [
{
type: "text",
text: data.choices[0].message.content
}
],
isError: false
};
} catch (error) {
console.error("Error calling Perplexity API:", error);
return {
content: [
{
type: "text",
text: `Error: ${error instanceof Error ? error.message : String(error)}`
}
],
isError: true
};
}
}
// Define tool interfaces
interface ToolDefinition {
name: string;
description: string;
schema: Record<string, any>;
handler: (args: any) => Promise<any>;
}
// Create tool definitions
const perplexityAskTool: ToolDefinition = {
name: "perplexity_ask",
description: "Send a direct question to Perplexity AI and receive a comprehensive answer. " +
"This tool leverages powerful AI models to analyse and respond to complex questions " +
"with detailed, factual answers. Citations for sources are included when available. " +
"Best for direct questions requiring factual or analytical responses.",
schema: askSchema,
handler: async (args: {
question: string;
model?: string;
system_prompt?: string;
max_tokens?: number
}) => {
const { question, model, system_prompt, max_tokens } = args;
return await askPerplexity(
question,
model,
system_prompt,
max_tokens
);
}
};
const perplexitySearchTool: ToolDefinition = {
name: "perplexity_search",
description: "Perform a web search query with Perplexity AI to find relevant information online. " +
"This tool combines web search capabilities with AI-powered analysis to deliver " +
"comprehensive search results with source citations. " +
"Best for research questions, current events queries, or when you need information " +
"from multiple online sources.",
schema: searchSchema,
handler: async (args: {
query: string;
model?: string;
system_prompt?: string;
max_tokens?: number
}) => {
const { query, model, system_prompt, max_tokens } = args;
return await searchPerplexity(
query,
model,
system_prompt,
max_tokens
);
}
};
// Create a basic JSON-RPC message handler to handle MCP requests
const handleMessage = async (message: any) => {
try {
// Basic validation
if (!message.id || !message.method) {
throw new Error("Invalid message format");
}
console.error(`Received method: ${message.method}`);
// Handle tools/list
if (message.method === "tools/list") {
return {
jsonrpc: "2.0",
id: message.id,
result: {
tools: [
{
name: perplexityAskTool.name,
description: perplexityAskTool.description,
inputSchema: {
type: "object",
properties: {
question: { type: "string", description: "The question to ask Perplexity AI" },
model: {
type: "string",
description: "Perplexity model to use",
enum: ["sonar-reasoning", "sonar-pro", "sonar-deep-research"],
default: "sonar-reasoning"
},
system_prompt: {
type: "string",
description: "Optional system prompt to guide the model's behaviour",
default: "You are a helpful assistant. Ensure all of your outputs are in UK English only."
},
max_tokens: {
type: "number",
description: "Maximum number of tokens in the response",
default: 1000
}
},
required: ["question"]
}
},
{
name: perplexitySearchTool.name,
description: perplexitySearchTool.description,
inputSchema: {
type: "object",
properties: {
query: { type: "string", description: "Search query to find information online" },
model: {
type: "string",
description: "Perplexity model to use",
enum: ["sonar-reasoning", "sonar-pro", "sonar-deep-research"],
default: "sonar-reasoning"
},
system_prompt: {
type: "string",
description: "Optional system prompt to guide the model's behaviour",
default: "You are a helpful assistant. Ensure all of your outputs are in UK English only."
},
max_tokens: {
type: "number",
description: "Maximum number of tokens in the response",
default: 1000
}
},
required: ["query"]
}
}
]
}
};
}
// Handle tools/call
if (message.method === "tools/call") {
if (!message.params || !message.params.name || !message.params.arguments) {
throw new Error("Invalid tool call parameters");
}
const { name, arguments: args } = message.params;
if (name === perplexityAskTool.name) {
const result = await perplexityAskTool.handler(args);
return {
jsonrpc: "2.0",
id: message.id,
result
};
}
if (name === perplexitySearchTool.name) {
const result = await perplexitySearchTool.handler(args);
return {
jsonrpc: "2.0",
id: message.id,
result
};
}
throw new Error(`Unknown tool: ${name}`);
}
// Handle initialization requests
if (message.method === "initialize") {
return {
jsonrpc: "2.0",
id: message.id,
result: {
server: {
name: "perplexity-insight",
version: "0.1.0"
},
capabilities: {
tools: {
listChanged: true
}
}
}
};
}
// Return error for unknown methods
throw new Error(`Unknown method: ${message.method}`);
} catch (error: any) {
console.error(`Error handling message:`, error);
return {
jsonrpc: "2.0",
id: message.id || null,
error: {
code: -32603,
message: error.message || "Internal error"
}
};
}
};
// Set up the transport
process.stdin.setEncoding('utf8');
let buffer = '';
process.stdin.on('data', (chunk) => {
buffer += chunk;
try {
// Process complete lines
const lines = buffer.split('\n');
buffer = lines.pop() || ''; // Keep the last partial line in the buffer
for (const line of lines) {
if (line.trim() === '') continue;
try {
const message = JSON.parse(line);
handleMessage(message).then(response => {
if (response) {
const responseStr = JSON.stringify(response) + '\n';
process.stdout.write(responseStr);
}
}).catch(err => {
console.error('Error processing message:', err);
const errorResponse = {
jsonrpc: "2.0",
id: message.id || null,
error: {
code: -32603,
message: err.message || "Unknown error"
}
};
process.stdout.write(JSON.stringify(errorResponse) + '\n');
});
} catch (parseError) {
console.error('Error parsing JSON message:', parseError);
}
}
} catch (error) {
console.error('Error processing input:', error);
}
});
console.error("Perplexity MCP Server running on stdio");