Skip to main content
Glama

MCP Server Starter

readme.md18.1 kB
## What is MCP? [![smithery badge](https://smithery.ai/badge/@TheSethRose/mcp-server-starter)](https://smithery.ai/server/@TheSethRose/mcp-server-starter) The Model Context Protocol (MCP) is a specialized framework designed to streamline the process of enabling AI agents to interact with a wide array of tools. This starter template helps you quickly build a Model Context Protocol (MCP) server using TypeScript. It provides a robust foundation that you can easily extend to create advanced MCP tools and seamlessly integrate them with various AI platforms. ## Core Components - **MCP Servers**: These servers act as bridges, exposing APIs, databases, and code libraries to external AI hosts. By implementing an MCP server in TypeScript, developers can share data sources or computational logic in a standardized way using JSON-RPC 2.0. - **MCP Clients**: These are the consumer-facing side of MCP, communicating with servers to query data or perform actions. MCP clients use TypeScript SDKs, ensuring type-safe interactions and uniform approach to tool usage. - **MCP Hosts**: Systems such as Claude, Cursor, Windsurf, Cline, and other TypeScript-based platforms coordinate requests between servers and clients, ensuring seamless data flow. A single MCP server can thus be accessed by multiple AI hosts without custom integrations. ## TypeScript Implementation The MCP TypeScript SDK provides core classes for building servers: ```typescript import { Server } from "@modelcontextprotocol/sdk/server/index.js"; import { StdioServerTransport } from "@modelcontextprotocol/sdk/server/stdio.js"; const server = new Server({ name: "mcp-server-starter", version: "1.0.0", capabilities: { tools: {}, // Enable tools capability resources: {}, // Enable resource access prompts: {}, // Enable prompt handling streaming: true // Enable streaming responses } }); // Connect transport const transport = new StdioServerTransport(); await server.connect(transport); ``` By using MCP, developers no longer need complex custom code to integrate new tools or services. Instead, they build an MCP server and make it available to supported hosts. ## Prerequisites - **Node.js (v18 or later)**: A modern version of Node.js that takes advantage of the latest JavaScript features and performance improvements. - **npm (v7 or later)**: Ensures compatibility for installing and managing packages. - **VS Code with Dev Containers extension**: Allows you to quickly spin up a reproducible development environment, making collaboration easier and more efficient. ## Project Structure A typical file layout for the MCP server template may look like this: ``` mcp-server/ ├── .devcontainer/ # Dev container configuration │ └── devcontainer.json ├── src/ │ ├── index.ts # MCP Server main entry point │ └── examples/ # Example tool implementations │ ├── calculator.ts # Calculator tool example │ └── rest-api.ts # REST API tool example ├── package.json # Project configuration └── tsconfig.json # TypeScript configuration ``` The `.devcontainer` directory streamlines container-based development, while the `src/` folder houses the main server logic and examples of custom tools. This structure keeps your project organized and easy to navigate. ## Quick Start ### Installing via Smithery To install MCP Server Starter for any supported client: ```bash # For Claude npx -y @smithery/cli install @TheSethRose/mcp-server-starter --client claude # For Cursor npx -y @smithery/cli install @TheSethRose/mcp-server-starter --client cursor # For Windsurf npx -y @smithery/cli install @TheSethRose/mcp-server-starter --client windsurf # For Cline npx -y @smithery/cli install @TheSethRose/mcp-server-starter --client cline # For TypeScript npx -y @smithery/cli install @TheSethRose/mcp-server-starter --client typescript ``` 1. **Clone this template**: Retrieve the repository files from your preferred source. 2. **Open in VS Code with Dev Containers**: If you have the Dev Containers extension installed, you will be prompted to open this project inside a container. 3. **Install dependencies**: ```bash npm install ``` This command fetches and installs all required packages for the MCP server. 4. **Build the project**: ```bash npm run build ``` This compiles your TypeScript code into JavaScript, preparing it for runtime. ## Development Scripts - **Build the project**: ```bash npm run build ``` Compiles your TypeScript source and sets file permissions for the main entry point. - **Watch mode**: ```bash npm run watch ``` Automatically recompiles TypeScript files whenever changes are made, ideal for active development. - **Run with inspector**: ```bash npm run inspector ``` Launches the server alongside a debugging tool, enabling you to trace issues, set breakpoints, and inspect variables in real time. ## Tool Response Format MCP tools must return responses in a specific format to ensure proper communication with AI hosts. Here's the structure: ```typescript interface ToolResponse { content: ContentItem[]; isError?: boolean; metadata?: Record<string, unknown>; } interface ContentItem { type: string; text?: string; mimeType?: string; data?: unknown; } ``` Supported content types include: - `text`: Plain text content - `code`: Code snippets with optional language specification - `image`: Base64-encoded images with MIME type - `file`: File content with MIME type - `error`: Error messages (when `isError` is true) Example response: ```typescript return { content: [ { type: "text", text: "Operation completed successfully" }, { type: "code", text: "console.log('Hello, World!')", mimeType: "application/javascript" } ] }; ``` ## Security Best Practices When developing MCP tools, follow these security guidelines: 1. **Input Validation**: - Always validate input parameters using Zod schemas - Implement strict type checking - Sanitize user inputs before processing - Use the `strict()` option in schemas to prevent extra properties 2. **Error Handling**: - Never expose internal error details to clients - Implement proper error boundaries - Log errors securely - Return user-friendly error messages 3. **Resource Management**: - Implement proper cleanup procedures - Handle process termination signals - Close connections and free resources - Implement timeouts for long-running operations 4. **API Security**: - Use secure transport protocols - Implement rate limiting - Store sensitive data securely - Use environment variables for configuration Example secure tool implementation: ```typescript const SecureSchema = z.object({ input: z.string() .min(1) .max(1000) .transform(str => str.trim()) .pipe(z.string().regex(/^[a-zA-Z0-9\s]+$/)) }); server.tool( "secure_tool", SecureSchema.shape, async (params) => { try { // Implement rate limiting await rateLimiter.checkLimit(); // Process validated input const result = await processSecurely(params.input); return { content: [{ type: "text", text: result }] }; } catch (error) { // Log error internally logger.error(error); // Return safe error message return { content: [{ type: "text", text: "An error occurred processing your request" }], isError: true }; } } ); ``` ## Advanced Features ### Streaming Responses MCP supports streaming responses for long-running operations: ```typescript server.tool( "stream_data", StreamSchema.shape, async function* (params) { for (const chunk of dataStream) { yield { content: [{ type: "text", text: chunk }] }; } } ); ``` ### Custom Content Types You can define custom content types for specialized data: ```typescript interface CustomContent extends ContentItem { type: "custom"; data: { format: string; value: unknown; }; } ``` ### Async Tool Execution Implement proper async handling: ```typescript server.tool( "async_operation", AsyncSchema.shape, async (params) => { const operation = await startAsyncOperation(); while (!operation.isComplete()) { await operation.wait(); } return { content: [{ type: "text", text: await operation.getResult() }] }; } ); ``` ## Testing & Debugging ### Unit Testing Use Jest for testing your tools: ```typescript describe('Calculator Tool', () => { let server: McpServer; beforeEach(() => { server = new McpServer({ name: "test-server", version: "1.0.0" }); registerCalculatorTool(server); }); test('adds numbers correctly', async () => { const result = await server.executeTool('calculate', { a: 5, b: 3, operation: 'add' }); expect(result.content[0].text).toBe('8'); }); }); ``` ### Debugging Tools 1. **MCP Inspector**: ```bash npm run inspector ``` Provides real-time inspection of: - Tool registration - Request/response flow - Error handling - Performance metrics 2. **Logging**: ```typescript function logMessage(level: 'info' | 'warn' | 'error', message: string) { console.error(`[${level.toUpperCase()}] ${message}`); } ``` 3. **Error Tracking**: ```typescript process.on('uncaughtException', (error: Error) => { logMessage('error', `Uncaught error: ${error.message}`); // Implement error reporting }); ``` ## Transport Configuration MCP supports multiple transport protocols: ### stdio Transport ```typescript import { StdioServerTransport } from "@modelcontextprotocol/sdk/server/stdio.js"; const transport = new StdioServerTransport(); await server.connect(transport); ``` ### WebSocket Transport ```typescript import { WebSocketServerTransport } from "@modelcontextprotocol/sdk/server/websocket.js"; const transport = new WebSocketServerTransport({ port: 3000 }); await server.connect(transport); ``` ### Custom Transport ```typescript import { Transport } from "@modelcontextprotocol/sdk/server/transport.js"; class CustomTransport implements Transport { // Implement transport methods } ``` ## Server Capabilities Configure server capabilities: ```typescript const server = new McpServer({ name: "mcp-server", version: "1.0.0", capabilities: { tools: {}, // Enable tools capability streaming: true, // Enable streaming support customContent: ["myFormat"], // Define custom content types metadata: true // Enable metadata support } }); ``` ## Integration with MCP Hosts ### Multi-Client Support This MCP server template supports multiple AI platforms out of the box: 1. **Claude Desktop**: - Provides a chat-based environment - Supports all MCP capabilities - Ideal for conversational AI interactions 2. **Cursor**: - AI-powered development environment - Full tool integration support - Perfect for coding assistance 3. **Windsurf**: - Modern AI development platform - Complete MCP protocol support - Streamlined workflow integration 4. **Cline**: - Command-line AI interface - Tool-focused interactions - Efficient terminal-based usage 5. **TypeScript**: - Native TypeScript support - Type-safe tool development - Seamless SDK integration Each client can be configured using the appropriate Smithery CLI command: ```bash npx -y @smithery/cli run @TheSethRose/mcp-server-starter --client [client-name] ``` Replace `[client-name]` with one of: `claude`, `cursor`, `windsurf`, `cline`, or `typescript`. ### Smithery Integration A convenient way to run this MCP server is through Smithery, a centralized platform for discovering and publishing MCP servers. Smithery simplifies deployment and ensures your server can be integrated into various AI workflows. #### Quick Run You can immediately execute this server via the Smithery CLI: ```bash npx -y @smithery/cli@latest run mcp-server-template --config "{}" ``` Smithery automatically fetches, installs, and runs the server from its latest release, requiring minimal setup from you. #### Publishing Your Own Version If you have developed new tools or made local modifications and wish to share them, consider publishing your customized server: 1. Create an account on [Smithery](https://smithery.ai). 2. Follow their deployment instructions to bundle and publish your MCP server. 3. Other users can then run your server through Smithery by referencing your unique package name. Smithery offers: - A centralized registry to discover and share MCP servers. - Simplified deployment, removing repetitive setup. - A community-driven approach where developers contribute diverse tools. - Easy integration with popular AI hosts. For additional guidance: - [Smithery Documentation](https://smithery.ai/docs) - [Smithery GitHub](https://github.com/smithery-ai) ### Cursor Integration Cursor is another AI development environment that supports MCP. To incorporate your server into Cursor: 1. **Build your server**: ```bash npm run build ``` Ensure an executable `index.js` is generated in the `build` directory. 2. **In Cursor, go to** `Settings` > `Features` > `MCP`: Add a new MCP server. 3. **Register your server**: - Select `stdio` as the transport type. - Provide a descriptive `Name`. - Set the command, for example: `node /path/to/your/mcp-server/build/index.js`. 4. **Save** your configuration. Cursor then detects and lists your tools. During AI-assisted coding sessions or prompt-based interactions, it will call your MCP tools whenever relevant. You can also instruct the AI to use a specific tool by name. ### Claude Desktop Integration Claude Desktop provides a chat-based environment where you can leverage MCP tools. To include your server: 1. **Build your server**: ```bash npm run build ``` Confirm that no errors occur and that the main script is generated in `build`. 2. **Modify** `claude_desktop_config.json`: ```json { "mcpServers": { "mcp-server": { "command": "node", "args": [ "/path/to/your/mcp-server/build/index.js" ] } } } ``` Provide the path to your compiled main file along with any additional arguments. 3. **Restart Claude Desktop** to load the new configuration. When you interact with Claude Desktop, it can now invoke the MCP tools you have registered. If a user's request aligns with any of your tool's functionality, Claude will prompt to use that tool. ## Development Best Practices 1. **Use TypeScript** for better type checking, clearer code organization, and easier maintenance over time. 2. **Adopt consistent patterns** for implementing tools: - Keep each tool in its own file - Use descriptive schemas with proper documentation - Implement comprehensive error handling - Return properly formatted content 3. **Include thorough documentation**: - Add JSDoc comments to explain functionality - Document parameters and return types - Include examples where helpful 4. **Leverage the inspector** for debugging: ```bash npm run inspector ``` This helps you: - Test tool functionality - Debug request/response flow - Verify schema validation - Check error handling 5. **Test comprehensively** before deployment: - Verify input validation - Test error scenarios - Check response formatting - Ensure proper integration with hosts 6. **Follow MCP best practices**: - Use proper content types - Implement proper error handling - Validate all inputs and outputs - Handle network requests safely - Format responses consistently ## Learn More For further information on the MCP ecosystem, refer to: - [Model Context Protocol Documentation](https://modelcontextprotocol.io): Detailed coverage of MCP architecture, design principles, and more advanced usage examples. - [Smithery - MCP Server Registry](https://smithery.ai/docs): Guidelines for publishing your tools to Smithery and best practices for their registry. - [MCP TypeScript SDK Documentation](https://modelcontextprotocol.io/typescript): Comprehensive documentation of the TypeScript SDK. - [MCP Security Guidelines](https://modelcontextprotocol.io/security): Detailed security best practices and recommendations. ## Conclusion By following this template and best practices, you can quickly build a robust MCP server that opens your tools to a broad range of AI hosts. This expanded approach ensures easier maintenance, better type safety, and a smooth user experience when harnessing the capabilities of modern AI systems. ## Credits **Template created by Seth Rose**: - **Website**: [https://www.sethrose.dev](https://www.sethrose.dev) - **𝕏 (Twitter)**: [https://x.com/TheSethRose](https://x.com/TheSethRose) - **🦋 (Bluesky)**: [https://bsky.app/profile/sethrose.dev](https://bsky.app/profile/sethrose.dev) ## Best Practices 1. **Type Safety**: - Leverage TypeScript's type system for robust tool definitions - Use Zod schemas for runtime validation - Define clear interfaces for tool parameters and responses 2. **Transport Selection**: - Use `StdioServerTransport` for local process communication - Implement `WebSocketServerTransport` for network-based tools - Consider custom transports for specific use cases 3. **Capability Management**: - Clearly define server capabilities during initialization - Implement proper capability negotiation - Handle capability-specific errors gracefully 4. **Security Considerations**: - Implement user consent flows for sensitive operations - Validate all inputs using TypeScript types and Zod schemas - Handle errors securely without exposing internal details

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/TheSethRose/MCP-Server-Starter'

If you have feedback or need assistance with the MCP directory API, please join our Discord server