---
name: ai-model-cloudbase
description: Complete guide for calling AI models with CloudBase - covers JS/Node SDK and WeChat Mini Program. Text generation, streaming, and image generation.
alwaysApply: false
---
## When to use this skill
Use this skill for **calling AI models using CloudBase** across all platforms.
**Supported platforms:**
| Platform | SDK/API | Section |
|----------|---------|---------|
| Web (Browser) | `@cloudbase/js-sdk` | Part 1 |
| Node.js (Server/Cloud Functions) | `@cloudbase/node-sdk` ≥3.16.0 | Part 1 (same API, different init) |
| Any platform (HTTP) | HTTP API / OpenAI SDK | Part 2 |
| WeChat Mini Program | `wx.cloud.extend.AI` | Part 3 ⚠️ Different API |
---
## How to use this skill (for a coding agent)
1. **Identify the target platform** - Ask user which platform they're developing for
2. **Confirm CloudBase environment** - Get `env` (environment ID) and credentials
3. **Pick the appropriate section** - **Part 1** for JS/Node SDK, **Part 3** for WeChat Mini Program
4. **Follow CloudBase API shapes exactly** - Do not invent new APIs
---
# Part 1: CloudBase JS SDK & Node SDK
**JS SDK and Node SDK share the same AI API.** Only initialization differs.
## Installation
```bash
# For Web (Browser)
npm install @cloudbase/js-sdk
# For Node.js (Server/Cloud Functions)
npm install @cloudbase/node-sdk
```
⚠️ **Node SDK AI feature requires version 3.16.0 or above.** Check your version with `npm list @cloudbase/node-sdk`.
## Initialization - Web (JS SDK)
```js
import cloudbase from "@cloudbase/js-sdk";
const app = cloudbase.init({
env: "<YOUR_ENV_ID>",
accessKey: "<YOUR_PUBLISHABLE_KEY>" // Get from CloudBase console
});
const auth = app.auth();
await auth.signInAnonymously();
const ai = app.ai();
```
## Initialization - Node.js (Node SDK)
```js
const tcb = require('@cloudbase/node-sdk');
const app = tcb.init({ env: '<YOUR_ENV_ID>' });
exports.main = async (event, context) => {
const ai = app.ai();
// Use AI features - same API as JS SDK
};
```
## generateText() - Non-streaming
```js
const model = ai.createModel("hunyuan-exp");
const result = await model.generateText({
model: "hunyuan-lite",
messages: [{ role: "user", content: "你好,请你介绍一下李白" }],
});
console.log(result.text); // Generated text string
console.log(result.usage); // { prompt_tokens, completion_tokens, total_tokens }
console.log(result.messages); // Full message history
console.log(result.rawResponses); // Raw model responses
```
## streamText() - Streaming
```js
const model = ai.createModel("hunyuan-exp");
const res = await model.streamText({
model: "hunyuan-turbos-latest",
messages: [{ role: "user", content: "你好,请你介绍一下李白" }],
});
// Option 1: Iterate text stream (recommended)
for await (let text of res.textStream) {
console.log(text); // Incremental text chunks
}
// Option 2: Iterate data stream for full response data
for await (let data of res.dataStream) {
console.log(data); // Full response chunk with metadata
}
// Option 3: Get final results
const messages = await res.messages; // Full message history
const usage = await res.usage; // Token usage
```
## generateImage() - Image Generation
⚠️ **Image generation is currently only available in Node SDK**, not in JS SDK (Web) or WeChat Mini Program.
```js
// Node SDK only
const imageModel = ai.createImageModel("hunyuan-image");
const res = await imageModel.generateImage({
model: "hunyuan-image",
prompt: "一只可爱的猫咪在草地上玩耍",
size: "1024x1024",
version: "v1.9",
});
console.log(res.data[0].url); // Image URL (valid 24 hours)
console.log(res.data[0].revised_prompt);// Revised prompt if revise=true
```
---
# Part 2: CloudBase HTTP API
## API Endpoint
```
https://<ENV_ID>.api.tcloudbasegateway.com/v1/ai/<PROVIDER>/v1/chat/completions
```
## cURL - Non-streaming
```bash
curl -X POST 'https://<ENV_ID>.api.tcloudbasegateway.com/v1/ai/deepseek/v1/chat/completions' \
-H 'Authorization: Bearer <YOUR_API_KEY>' \
-H 'Content-Type: application/json' \
-d '{"model": "deepseek-r1", "messages": [{"role": "user", "content": "你好"}], "stream": false}'
```
## cURL - Streaming
```bash
curl -X POST 'https://<ENV_ID>.api.tcloudbasegateway.com/v1/ai/deepseek/v1/chat/completions' \
-H 'Authorization: Bearer <YOUR_API_KEY>' \
-H 'Content-Type: application/json' \
-H 'Accept: text/event-stream' \
-d '{"model": "deepseek-r1", "messages": [{"role": "user", "content": "你好"}], "stream": true}'
```
## OpenAI SDK Compatible
```js
const OpenAI = require("openai");
const client = new OpenAI({
apiKey: "<YOUR_API_KEY>",
baseURL: "https://<ENV_ID>.api.tcloudbasegateway.com/v1/ai/deepseek/v1",
});
const completion = await client.chat.completions.create({
model: "deepseek-r1",
messages: [{ role: "user", content: "你好" }],
stream: true,
});
for await (const chunk of completion) {
console.log(chunk);
}
```
---
# Part 3: WeChat Mini Program
⚠️ **WeChat Mini Program API is DIFFERENT from JS/Node SDK.** Pay attention to the parameter structure.
**Requires base library 3.7.1+. No extra SDK needed.**
## Initialization
```js
// app.js
App({
onLaunch: function() {
wx.cloud.init({ env: "<YOUR_ENV_ID>" });
}
})
```
## generateText() - Non-streaming
⚠️ **Different from JS/Node SDK:** Return value is raw model response.
```js
const model = wx.cloud.extend.AI.createModel("hunyuan-exp");
const res = await model.generateText({
model: "hunyuan-lite",
messages: [{ role: "user", content: "你好" }],
});
// ⚠️ Return value is RAW model response, NOT wrapped like JS/Node SDK
console.log(res.choices[0].message.content); // Access via choices array
console.log(res.usage); // Token usage
```
## streamText() - Streaming
⚠️ **Different from JS/Node SDK:** Must wrap parameters in `data` object, supports callbacks.
```js
const model = wx.cloud.extend.AI.createModel("hunyuan-exp");
// ⚠️ Parameters MUST be wrapped in `data` object
const res = await model.streamText({
data: { // ⚠️ Required wrapper
model: "hunyuan-lite",
messages: [{ role: "user", content: "hi" }]
},
onText: (text) => { // Optional: incremental text callback
console.log("New text:", text);
},
onEvent: ({ data }) => { // Optional: raw event callback
console.log("Event:", data);
},
onFinish: (fullText) => { // Optional: completion callback
console.log("Done:", fullText);
}
});
// Async iteration also available
for await (let str of res.textStream) {
console.log(str);
}
// Check for completion with eventStream
for await (let event of res.eventStream) {
console.log(event);
if (event.data === "[DONE]") { // ⚠️ Check for [DONE] to stop
break;
}
}
```
---
# API Comparison: JS/Node SDK vs WeChat Mini Program
| Feature | JS/Node SDK | WeChat Mini Program |
|---------|-------------|---------------------|
| **Namespace** | `app.ai()` | `wx.cloud.extend.AI` |
| **generateText params** | Direct object | Direct object |
| **generateText return** | `{ text, usage, messages }` | Raw: `{ choices, usage }` |
| **streamText params** | Direct object | ⚠️ Wrapped in `data: {...}` |
| **streamText return** | `{ textStream, dataStream }` | `{ textStream, eventStream }` |
| **Callbacks** | Not supported | `onText`, `onEvent`, `onFinish` |
| **Image generation** | Node SDK only | Not available |
---
# Type Definitions
## JS/Node SDK - BaseChatModelInput
```ts
interface BaseChatModelInput {
model: string; // Required: model name
messages: Array<ChatModelMessage>; // Required: message array
temperature?: number; // Optional: sampling temperature
topP?: number; // Optional: nucleus sampling
}
type ChatModelMessage =
| { role: "user"; content: string }
| { role: "system"; content: string }
| { role: "assistant"; content: string };
```
## JS/Node SDK - generateText() Return
```ts
interface GenerateTextResult {
text: string; // Generated text
messages: Array<ChatModelMessage>; // Full message history
usage: Usage; // Token usage
rawResponses: Array<unknown>; // Raw model responses
error?: unknown; // Error if any
}
interface Usage {
prompt_tokens: number;
completion_tokens: number;
total_tokens: number;
}
```
## JS/Node SDK - streamText() Return
```ts
interface StreamTextResult {
textStream: AsyncIterable<string>; // Incremental text stream
dataStream: AsyncIterable<DataChunk>; // Full data stream
messages: Promise<ChatModelMessage[]>;// Final message history
usage: Promise<Usage>; // Final token usage
error?: unknown; // Error if any
}
interface DataChunk {
choices: Array<{
finish_reason: string;
delta: ChatModelMessage;
}>;
usage: Usage;
rawResponse: unknown;
}
```
## WeChat Mini Program - streamText() Input
```ts
interface WxStreamTextInput {
data: { // ⚠️ Required wrapper object
model: string;
messages: Array<{
role: "user" | "system" | "assistant";
content: string;
}>;
};
onText?: (text: string) => void; // Incremental text callback
onEvent?: (prop: { data: string }) => void; // Raw event callback
onFinish?: (text: string) => void; // Completion callback
}
```
## WeChat Mini Program - streamText() Return
```ts
interface WxStreamTextResult {
textStream: AsyncIterable<string>; // Incremental text stream
eventStream: AsyncIterable<{ // Raw event stream
event?: unknown;
id?: unknown;
data: string; // "[DONE]" when complete
}>;
}
```
## WeChat Mini Program - generateText() Return
```ts
// Raw model response (OpenAI-compatible format)
interface WxGenerateTextResponse {
id: string;
object: "chat.completion";
created: number;
model: string;
choices: Array<{
index: number;
message: {
role: "assistant";
content: string;
};
finish_reason: string;
}>;
usage: {
prompt_tokens: number;
completion_tokens: number;
total_tokens: number;
};
}
```
## HunyuanGenerateImageInput (JS/Node SDK only)
```ts
interface HunyuanGenerateImageInput {
model: "hunyuan-image" | string; // Required
prompt: string; // Required: image description
version?: "v1.8.1" | "v1.9"; // Default: "v1.8.1"
size?: string; // Default: "1024x1024"
negative_prompt?: string; // v1.9 only
style?: string; // v1.9 only
revise?: boolean; // Default: true
n?: number; // Default: 1
footnote?: string; // Watermark, max 16 chars
seed?: number; // Range: [1, 4294967295]
}
interface HunyuanGenerateImageOutput {
id: string;
created: number;
data: Array<{
url: string; // Image URL (24h valid)
revised_prompt?: string;
}>;
}
```
---
# Best Practices
1. **Use streaming for long responses** - Better user experience
2. **Handle errors gracefully** - Wrap AI calls in try/catch
3. **Keep API Keys secure** - Never expose in client-side code
4. **Initialize early** - Initialize SDK/cloud in app entry point
5. **Check for [DONE]** - In WeChat Mini Program streaming, check `event.data === "[DONE]"` to stop