---
name: ai-model-wechat
description: Use this skill when developing WeChat Mini Programs (小程序, 企业微信小程序, wx.cloud-based apps) that need AI capabilities. Features text generation (generateText) and streaming (streamText) with callback support (onText, onEvent, onFinish) via wx.cloud.extend.AI. Built-in models include Hunyuan (hunyuan-2.0-instruct-20251111 recommended) and DeepSeek (deepseek-v3.2 recommended). API differs from JS/Node SDK - streamText requires data wrapper, generateText returns raw response. NOT for browser/Web apps (use ai-model-web), Node.js backend (use ai-model-nodejs), or image generation (not supported).
alwaysApply: false
---
## When to use this skill
Use this skill for **calling AI models in WeChat Mini Program** using `wx.cloud.extend.AI`.
**Use it when you need to:**
- Integrate AI text generation in a Mini Program
- Stream AI responses with callback support
- Call Hunyuan models from WeChat environment
**Do NOT use for:**
- Browser/Web apps → use `ai-model-web` skill
- Node.js backend or cloud functions → use `ai-model-nodejs` skill
- Image generation → use `ai-model-nodejs` skill (not available in Mini Program)
- HTTP API integration → use `http-api` skill
---
## Available Providers and Models
CloudBase provides these built-in providers and models:
| Provider | Models | Recommended |
|----------|--------|-------------|
| `hunyuan-exp` | `hunyuan-turbos-latest`, `hunyuan-t1-latest`, `hunyuan-2.0-thinking-20251109`, `hunyuan-2.0-instruct-20251111` | ✅ `hunyuan-2.0-instruct-20251111` |
| `deepseek` | `deepseek-r1-0528`, `deepseek-v3-0324`, `deepseek-v3.2` | ✅ `deepseek-v3.2` |
---
## Prerequisites
- WeChat base library **3.7.1+**
- No extra SDK installation needed
---
## Initialization
```js
// app.js
App({
onLaunch: function() {
wx.cloud.init({ env: "<YOUR_ENV_ID>" });
}
})
```
---
## generateText() - Non-streaming
⚠️ **Different from JS/Node SDK:** Return value is raw model response.
```js
const model = wx.cloud.extend.AI.createModel("hunyuan-exp");
const res = await model.generateText({
model: "hunyuan-2.0-instruct-20251111", // Recommended model
messages: [{ role: "user", content: "你好" }],
});
// ⚠️ Return value is RAW model response, NOT wrapped like JS/Node SDK
console.log(res.choices[0].message.content); // Access via choices array
console.log(res.usage); // Token usage
```
---
## streamText() - Streaming
⚠️ **Different from JS/Node SDK:** Must wrap parameters in `data` object, supports callbacks.
```js
const model = wx.cloud.extend.AI.createModel("hunyuan-exp");
// ⚠️ Parameters MUST be wrapped in `data` object
const res = await model.streamText({
data: { // ⚠️ Required wrapper
model: "hunyuan-2.0-instruct-20251111", // Recommended model
messages: [{ role: "user", content: "hi" }]
},
onText: (text) => { // Optional: incremental text callback
console.log("New text:", text);
},
onEvent: ({ data }) => { // Optional: raw event callback
console.log("Event:", data);
},
onFinish: (fullText) => { // Optional: completion callback
console.log("Done:", fullText);
}
});
// Async iteration also available
for await (let str of res.textStream) {
console.log(str);
}
// Check for completion with eventStream
for await (let event of res.eventStream) {
console.log(event);
if (event.data === "[DONE]") { // ⚠️ Check for [DONE] to stop
break;
}
}
```
---
## API Comparison: JS/Node SDK vs WeChat Mini Program
| Feature | JS/Node SDK | WeChat Mini Program |
|---------|-------------|---------------------|
| **Namespace** | `app.ai()` | `wx.cloud.extend.AI` |
| **generateText params** | Direct object | Direct object |
| **generateText return** | `{ text, usage, messages }` | Raw: `{ choices, usage }` |
| **streamText params** | Direct object | ⚠️ Wrapped in `data: {...}` |
| **streamText return** | `{ textStream, dataStream }` | `{ textStream, eventStream }` |
| **Callbacks** | Not supported | `onText`, `onEvent`, `onFinish` |
| **Image generation** | Node SDK only | Not available |
---
## Type Definitions
### streamText() Input
```ts
interface WxStreamTextInput {
data: { // ⚠️ Required wrapper object
model: string;
messages: Array<{
role: "user" | "system" | "assistant";
content: string;
}>;
};
onText?: (text: string) => void; // Incremental text callback
onEvent?: (prop: { data: string }) => void; // Raw event callback
onFinish?: (text: string) => void; // Completion callback
}
```
### streamText() Return
```ts
interface WxStreamTextResult {
textStream: AsyncIterable<string>; // Incremental text stream
eventStream: AsyncIterable<{ // Raw event stream
event?: unknown;
id?: unknown;
data: string; // "[DONE]" when complete
}>;
}
```
### generateText() Return
```ts
// Raw model response (OpenAI-compatible format)
interface WxGenerateTextResponse {
id: string;
object: "chat.completion";
created: number;
model: string;
choices: Array<{
index: number;
message: {
role: "assistant";
content: string;
};
finish_reason: string;
}>;
usage: {
prompt_tokens: number;
completion_tokens: number;
total_tokens: number;
};
}
```
---
## Best Practices
1. **Check base library version** - Ensure 3.7.1+ for AI support
2. **Use callbacks for UI updates** - `onText` is great for real-time display
3. **Check for [DONE]** - When using `eventStream`, check `event.data === "[DONE]"` to stop
4. **Handle errors gracefully** - Wrap AI calls in try/catch
5. **Remember the `data` wrapper** - streamText params must be wrapped in `data: {...}`