Skip to main content
Glama

Excel MCP Server

alt text

uv init mcp-server-demo

cd mcp-server-demo

uv add "mcp[cli]" uv pip install mcp-python pandas matplotlib openpyxl fastapi uvicorn pillow uv run mcp dev server.py

uv run mcp install server.py

Excel MCP Server

This project implements a Model Context Protocol (MCP) server that provides tools and resources for working with Excel data. The server offers functionality for reading, updating, filtering, and visualizing Excel data through a simple API.

Features

  • Excel Operations: Read from and write to Excel files

  • Data Filtering: Filter and search data based on various criteria

  • Data Analysis: Generate statistical summaries and pivot tables

  • Data Visualization: Create various charts and visualizations

  • Update Operations: Update cells, add rows, delete rows

  • Anomaly Detection: Find outliers in numeric data

  • Chart Recommendations: Automatically suggest appropriate visualizations

Related MCP server: Excel MCP Server

Installation

  1. Install the required dependencies:

pip install mcp-python pandas matplotlib openpyxl fastapi uvicorn pillow
  1. Clone this repository or download the files:

    • server.py - The MCP server implementation

    • client.py - Demo client to showcase the features

Usage

Starting the Server

Run the server:

python server.py

The server will start at http://localhost:8000 by default.

Using the Client Demo

The client demo script showcases various operations you can perform with the MCP server:

python client.py

This will:

  1. Create a sample Excel file (if it doesn't exist)

  2. Demonstrate basic Excel operations

  3. Show data filtering capabilities

  4. Generate visualizations

  5. Perform data updates

  6. Detect anomalies in the data

Using the API Directly

You can use the MCP server's API directly:

Tools API

Call tools using POST requests to /tools/{tool_name}:

import requests # Example: Read Excel file response = requests.post( "http://localhost:8000/tools/read_excel", json={"filename": "example.xlsx", "sheet_name": "Sheet1"} ) data = response.json()

Resources API

Access resources using GET or POST requests to /resources/{resource_path}:

# Example: Get sheet list response = requests.get("http://localhost:8000/resources/excel://example.xlsx/sheets") sheets = response.json()

Available Tools

Excel Operations

  • read_excel - Read data from an Excel file

  • write_excel - Write data to an Excel file

  • get_excel_sheets - Get the list of sheets in an Excel file

Data Filtering

  • filter_data - Filter Excel data based on conditions

  • search_data - Search for a term in Excel data

Data Analysis

  • summarize_data - Get statistical summary of Excel data

  • create_pivot_table - Create a pivot table from Excel data

Data Visualization

  • visualize_chart - Create various chart types (bar, line, scatter, pie, hist)

  • recommend_charts - Get chart recommendations based on data structure

Update Operations

  • update_cell - Update a specific cell in an Excel file

  • add_row - Add a new row to an Excel file

  • delete_rows - Delete rows from an Excel file based on filters

Additional Features

  • detect_anomalies - Find anomalies in numeric data using Z-scores

  • export_to_csv - Export Excel data to CSV format

Available Resources

  • excel://{filename}/sheets - Get list of sheets in an Excel file

  • excel://{filename}/sheet/{sheet_name} - Get data from a specific sheet

  • excel://{filename}/sheet/{sheet_name}/summary - Get summary of sheet data

  • excel://{filename}/sheet/{sheet_name}/filter - Filter data in a sheet

Example: Creating a Custom Client

You can create your own client to interact with the MCP server:

import requests def call_tool(tool_name, params): """Call an MCP tool""" url = f"http://localhost:8000/tools/{tool_name}" response = requests.post(url, json=params) return response.json() # Example: Get chart visualization chart_result = call_tool("visualize_chart", { "filename": "sales_data.xlsx", "sheet_name": "Sheet1", "chart_type": "bar", "x_column": "Month", "y_columns": ["Revenue"], "title": "Monthly Revenue" }) # Save chart image if chart_result.get("success", False) and "image" in chart_result: import base64 img_data = base64.b64decode(chart_result["image"]) with open("revenue_chart.png", "wb") as f: f.write(img_data)

Integration with AI Models

This MCP server can be easily integrated with AI models like Claude to provide natural language interfaces to Excel data:

  1. The AI can call the appropriate MCP tool based on the user's request

  2. Process the data returned by the tool

  3. Present insights and visualizations to the user

This creates an interactive "Excel assistant" that can understand natural language requests to analyze and manipulate Excel data.

-
security - not tested
-
license - not tested
-
quality - not tested

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/TapanKumarBarik/PYTHON-MCP'

If you have feedback or need assistance with the MCP directory API, please join our Discord server